Skip to main content
Log in

Composting of urban solid residues (USR) by different dispositions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior and non-isothermal kinetics of thermal decomposition of three different kinds of composting of the USR like: stack with drilled PVC tubes (ST), revolved stack (SR) and stack with material of structure (SM), from the usine of composing of Araraquara city, Săo Paulo state, Brazil, within a period of 132 days of composting were studied. Results from TG, DTG and DSC curves obtained on inert atmosphere indicated that the cellulosic fraction present, despite the slow degradation during the composting process, is thermally less stable than other substances originated from that process. Due to that behavior, the cellulosic fraction decomposition could be kinetically evaluated through non-isothermal methods of analysis. The values obtained were: average activation energy, Ea=248, 257 and 259 kJ mol-1 and pre- exponential factor, logA=21.4, 22.5, 22.7 min-1, to the ST, SR and SM, respectively. From Ea and logA values and DSC curves, Málek procedure could be applied, suggesting that the SB (Šesták-Berggren) kinetic model is the appropriated one to the first thermal decomposition step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Grossi, Tese de Doutorado, Instituto de Química-Universidade de São Paulo, 1993, p. 222.

  2. X. T. He, et al., J. Environ. Qual., 21 (1992) 318.

    CAS  Google Scholar 

  3. B. Chefetz, P. G. Hatcher, Y. Hadar and Y. Chen, J. Environ. Qual., 25 (1996) 776.

    Article  CAS  Google Scholar 

  4. S. C. Oliveira, C. A. Ribeiro, M. R. Santiago and M. S. Crespi, J. Compost and Utilization, (2001) Submitted.

  5. P. Jandura, B. Riedel and B. Kokta, Polymer Degradation and Stability, 70 (2000) 387.

    Article  CAS  Google Scholar 

  6. M. E. Brown, D. Dollimore and A. K. Galwey, Reaction in the Solid State. Comprehensive Chemical Kinetics, Vol. 22, Elsevier, Amsterdam 1980.

    Google Scholar 

  7. D. Dollimore and P. Phang, Anal. Chem., 72 (2000) 27R-36R

    Article  CAS  Google Scholar 

  8. S. Vyazovkin and C. A. Wight, Thermochim. Acta, 340 (1999) 53.

    Article  Google Scholar 

  9. J. H. Flynn and J. Wall, Nat. Bur. Stand., 70A (1966) 487.

    Google Scholar 

  10. T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.

    CAS  Google Scholar 

  11. T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  CAS  Google Scholar 

  12. C. Doyle, J. Appl. Polym. Sci., 6 (1962) 639.

    Article  CAS  Google Scholar 

  13. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  CAS  Google Scholar 

  14. J. Málek, J. Šesták, F. Rouquerol, J. Rouquerol, J. M. Criado and A. Ortega, J. Thermal Anal., 38 (1992) 71.

    Article  Google Scholar 

  15. J. Málek, J. Therm. Anal. Cal., 56 (1999) 763.

    Article  Google Scholar 

  16. J. Málek, Thermochim. Acta., 355 (2000) 239.

    Article  Google Scholar 

  17. J. Málek, J. Mat. Res., 16 (2001) 1862.

    Google Scholar 

  18. S. C. Oliveira, Dissertação de Mestrado —Instituto de Química — Universidade Estadual Paulista, 1997.

  19. J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespi, M.S., Silva, A.R., Ribeiro, C.A. et al. Composting of urban solid residues (USR) by different dispositions. Journal of Thermal Analysis and Calorimetry 72, 1049–1056 (2003). https://doi.org/10.1023/A:1025055323613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025055323613

Navigation