Skip to main content
Log in

Temporal progression of gene expression responses to salt shock in maize roots

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Using a cDNA microarray containing 7943 ESTs, the behavior of the maize root transcriptome has been monitored in a time course for 72 h after imposition of salinity stress (150 mM NaCl). Under these conditions, root sodium amounts increased faster than in leaves, and root potassium decreased significantly. Although the overall free amino acid concentration was not affected, amino acid composition was changed with proline and asparagine increasing. Microarray analysis identified 916 ESTs representing genes whose steady-state RNA levels were significantly altered at various time points, corresponding to 11% of the ESTs printed. The response of the transcriptome to sub-lethal salt stress was rapid and transient, leading to a burst of changes at the three-hour time point. The salt-regulated ESTs represented 472 tentatively unique genes (TUGs), which, based on functional category analysis, are involved in a broad range of cellular and biochemical activities, prominent amongst which were transport and signal transduction pathways. Clustering of regulated transcripts based on the timing and duration of changes suggests a structured succession of induction and repression for salt responsive genes in multiple signal and response cascades. Within this framework, 16 signaling molecules, including six protein kinases, two protein phosphatases and eight transcription factors, were regulated with distinct expression patterns by high salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P., Zegeer, A., Bohnert, H.J. and Jensen, R.G. 1993. Anion exchange separation and pulsed field amperometirc detection of inositols from flower petals. Anal. Biochem. 214: 321-324.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res 25: 3389-3402.

    Google Scholar 

  • Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258.

    Google Scholar 

  • Arsene, F., Tomoyasu, T. and Bukau, B. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55: 3-9.

    Google Scholar 

  • Asada, K. 1994. Production and action of active oxygen species in photosynthetic tissues. In: C.H. Foyer and P. Mullineaux (Eds.) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, CRC Press, London, pp. 77-104.

    Google Scholar 

  • Blumwald, E. 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12: 431-434.

    Google Scholar 

  • Bohnert, H.J. and Shen, B. 1999. Transformation and compatible solutes. Scient. Hort. 78: 237-260.

    Google Scholar 

  • Covitz, P.A., Smith, L.S. and Long, S.R. 1998. Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA library. Plant Physiol. 117: 1325-1332.

    Google Scholar 

  • Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M. and Bohnert, H.J. 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715-725.

    Google Scholar 

  • Dejardin, A., Sokolov, L.N. and Kleczkowski, L.A. 1999. Sugar/osmoticum levels modulate differential abscisic acidindependent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344: 503-509.

    Google Scholar 

  • Deyholos, M.K. and Galbraith, D.W. 2001. High-density microarrays for gene expression analysis. Cytometry 43: 229-238.

    Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863-14868.

    Google Scholar 

  • Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8: 186-194.

    Google Scholar 

  • Ewing, B., Hillier, L., Wedl, M.C. and Green, P. 1998. Basecalling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8: 175-185.

    Google Scholar 

  • Fisslthaler, B., Meyer, G., Bohnert, H.J., Schmitt, J.M. 1995. Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L. Planta 196: 492-500.

    Google Scholar 

  • Fowler, S. and Thomashow, M.F. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690.

    Google Scholar 

  • Grossman, A.R., Bhaya, D. and He, Q. 2001. Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J. Biol. Chem. 276: 11449-11452.

    Google Scholar 

  • Halfter, U., Ishitani, M. and Zhu, J.K. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. 1999. Free Radicals in Biology and Medicine, 3rd ed. Oxford University Press, Oxford.

    Google Scholar 

  • Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A. and Kay, S.A. 2000. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110-2113.

    Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.-K. and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499.

    Google Scholar 

  • Hu, M.C., Tang-Oxley, Q., Qiu, W.R., Wang, Y.P., Mihindukulasuriya, K.A., Afshar, R. and Tan, T.H. 1998. Protein phosphatase X interacts with c-Rel and stimulates c-Rel/nuclear factor βB activity. J Biol. Chem. 273: 33561-33565.

    Google Scholar 

  • Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R.G. and Bohnert, H.J. 1996. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537-548.

    Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17: 287-291.

    Google Scholar 

  • Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D.W. and Bohnert H.J. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889-906.

    Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki, K. and Shinozaki K. 1994. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 106: 1707.

    Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97: 2940-2945.

    Google Scholar 

  • Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 199-222.

    Google Scholar 

  • Leung, J., Merlot, S. and Giraudat, J. 1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE 2 (ABI2) and ABI1 genes encode homologous protein phosphatase 2C involved in the abscisic acid signal transduction. Plant Cell 9: 759-771.

    Google Scholar 

  • Liu, J. and Zhu, J.K. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280: 1943-1945.

    Google Scholar 

  • Lockhart, D.J. and Winzeler, E.A. 2000. Genomics, gene expression and DNA arrays. Nature 405: 827-836.

    Google Scholar 

  • Noctor, G and Foyer, CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279.

    Google Scholar 

  • Plana, M., Itarte, E., Eritja, R., Goday, A., Pagès, M. and Martinez, M.C. 1991. Phosphorylation of maize RAB-17 protein by casein kinase 2. J. Biol. Chem. 266: 22510-22514.

    Google Scholar 

  • Qiu, Q.S., Guo, Y., Dietrich, M.A., Schmaker, K.S. and Zhu, J.K. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99: 8436-8441.

    Google Scholar 

  • Rhoades, J.D. and Loveday, J. 1990. Salinity in irrigated agriculture. In: B.A. Stewart and D.R. Nielsen (Eds.) Irrigation of Agricultural Crops, American Society of Civil Engineers/American Society of Agronomists, pp 1089-1142.

  • Saneoka, H., Nagasaka, C., Hahn, D.T., Yang, W.J., Premachandra, G.S., Joly, R.J. and Rhodes, D. 1995. Salt tolerance of glycinebetaine-deficient and glycinebetaine-containing maize lines. Plant Physiol. 107: 631-638.

    Google Scholar 

  • Schaffer, R., Landgraf, J., Accerbi, M., Simon, V.V., Larson, M. and Wisman, E. 2001. Microarray analysis of diurnal and circadianregulated genes in Arabidopsis. Plant Cell 13: 113-123.

    Google Scholar 

  • Schroeder, J.I., Kwak, J.M. and Allen, G.J. 2001. Guard cell abscisic acid signaling and engineering of drought hardiness in plants. Nature 410: 327-330.

    Google Scholar 

  • Schwark, R. and Grossman, A.R. 1998. A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc. Natl. Acad. Sci. USA 95: 11008-11013.

    Google Scholar 

  • Shi, H., Ishitani, M., Kim, C. and Zhu, J.K. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 97: 6896-6901.

    Google Scholar 

  • Shi, H., Quintero, F.J., Pardo, J.M. and Zhu, J.K. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls longdistance Na+ transport in plants. Plant Cell 14: 465-477.

    Google Scholar 

  • Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223.

    Google Scholar 

  • Smith, R.D. and Walker, J.C. 1996. Plant protein phosphatases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 101-125.

    Google Scholar 

  • Stewart, G.R. and Larher, F. 1980. Accumulation of amino acids and related compounds in relation to environmental stress. In: B.J. Miflin (Ed.) The Biochemistry of Plants, Academic Press, London, pp. 609-635.

    Google Scholar 

  • Sutton, G., White, O., Adams, M. and Kerlavage, A. 1995. TIGR Assembler: a new tool for assembling large shotgun sequencing projects.Genome Sci. Technol. 1: 9-19.

    Google Scholar 

  • Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S. and Golub, T.R. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96: 2907-2912.

    Google Scholar 

  • Wang, H. 2001. Regulation of the plant C1 metabolic pathway and global gene responses in maize under salt stress. Ph.D. Thesis, University of Arizona, 245 pp.

  • Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L. and Somogyi, R. 1998. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA 95: 334-339.

    Google Scholar 

  • Yale, J. and Bohnert, H.J. 2001. Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276: 15996-16007.

    Google Scholar 

  • Yamada, S., Katsuhara, M., Kelly, W.B., Michalowski, C.B. and Bohnert, H.J. 1995. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7: 1129-1142.

    Google Scholar 

  • Yang, W.J., Nadolska-Orczyk, A., Wood, K.V., Hahn, D.T., Rich, P.J., Wood, A.J., Saneoka, H., Premachandra, G.S., Bonham, C.C., Rhodes, J.C., Joly, R.J., Samaras, Y., Goldsbrough, P.B. and Rhodes, D. 1995. Near-isogenic maize lines differing for glycinebetaine. Plant Physiol. 107: 621-630.

    Google Scholar 

  • Zhu, J.K. 2001. Plant salt tolerance. Trends Plant Sci. 16: 66-67.

    Google Scholar 

  • Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Bohnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Miyazaki, S., Kawai, K. et al. Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52, 873–891 (2003). https://doi.org/10.1023/A:1025029026375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025029026375

Navigation