Skip to main content
Log in

A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are growth-promoting natural substances required for normal plant growth and development. To understand the molecular mechanism of BR action, a cDNA microarray containing 1265 rice genes was analyzed for expression differences in rice lamina joint treated with brassinolide (BL). A novel BL-enhanced gene, designated OsBLE2, was identified and cloned. The full-length cDNA is 3243 bp long, encoding a predicted polypeptide of 761 amino acid residues and nine possible transmembrane regions. OsBLE2 expression was most responsive to BL in the lamina joint and leaf sheath in rice seedlings. Besides, auxin and gibberellins also increased its expression. OsBLE2 expressed more, as revealed by in situ hybridization, in vascular bundles and root primordia, where the cells are actively undergoing division, elongation, and differentiation. Transgenic rice expressing antisense OsBLE2 exhibits various degrees of repressed growth. BL could not enhance its expression in transgenic rice expressing antisense BRI1, a BR receptor, indicating that BR signaling to the enhanced expression of OsBLE2 is through BRI1. BL effect in the d1 mutant rice was much weaker than that in its wild-type control, indicating that heterotrimeric G protein may be a component of BRs signaling. These results suggest that OsBLE2 is involved in BL-regulated growth and development processes in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni, R. 1995. The induction of vascular tissues by auxin and cytokinin. In: P.J. Davies (Ed.) Plant Hormone: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publisher, Dordrecht, Netherlands, pp. 531-546.

    Google Scholar 

  • Ashikari, M., Wu, J., Yano, M., Sasaki, T. and Yoshimura, A. 1999. Rice gibberellin-insensitive dwarf gene Dwarf1 encodes the β subunit of GTP-binding protein. Proc. Natl. Acad. Sci. USA 96: 10284-10289.

    Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159.

    Google Scholar 

  • Clouse, S.D. and Zurek, D.M. 1991. Molecular analysis of brassinolide action in plant growth and development. In: H.G.C. Cutlar, T. Yokota and G. Adam (Eds.) Brassinosteroid: Chemistry, Bioactivity and Application, ACS Symposium Series 474, American Chemical Society, Washington, DC, pp. 122-140.

    Google Scholar 

  • Clouse, S.D. and Sasse, J.M. 1998. Brassinosteroids: essential regulator of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 427-451.

    Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S. and Yoshida, S. 2002. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 130: 1319-1334.

    Google Scholar 

  • Fujisawa, Y., Kato, H. and Iwasaki, Y. 2001. Structure and function of hetrotrimetric G protein in plants. Plant Cell Physiol. 42: 789-794.

    Google Scholar 

  • He, R., Wang, G. and Wang, X. 1991. Effects of brassinolide on growth and chilling resistance of maize seedling. In: H.G.C. Cutlar, T. Yokota and G. Adam (Eds.) Brassinosteroid: Chemistry, Bioactivity and Application, ACS Symposium Series 474, American Chemical Society, Washington, DC, pp. 220-230.

    Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T. and Kumashiro, Y. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis. Plant J. 6: 271-282.

    Google Scholar 

  • Hood, E.E., Helmer, G.L., Fraley, R.T. and Chilton, M.D. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo540 outside of T-DNA. J. Bact. 168: 1291-1301.

    Google Scholar 

  • Hu, Y., Bao, F. and Li, J. 2000. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J. 24: 693-701.

    Google Scholar 

  • Iwasaki, T. and Shibaoka, H. 1991. Brassionsteroids act as regulator of tracheary element differentiation in isolated Zinnia elegans mesophyll. Plant Cell Physiol. 32: 1007-1014.

    Google Scholar 

  • Jiang, J. and Clouse, S.D. 2001. Expression of a plant gene with sequence similarity to animal TGF-receptor interacting protein is regulated by brassinosteroids and required for normal plant development. Plant J. 26: 35-45.

    Google Scholar 

  • Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L. and Altmann, T. 1996. Genetic evidence for an essential role of brassinosteroids in plant development. Plant J. 9: 701-713.

    Google Scholar 

  • Kawasaki, S., Borchert, C., Deyholos M., Wang, H., Brazilla, S., Kawai, K., Galbraith, D. and Bohnert, H. 2001. Gene expression profile during the initial phase of salt stress in rice. Plant Cell 13: 889-905.

    Google Scholar 

  • Kawaguchi, M., Imaizumi-Anraku, H., Fukai, S. and Syono, K. 1996. Unusual branching in the seedlings of Lotus japonicus: gibberellins reveal the nitrogen-sensitive cell division within the pericycle on roots. Plant Cell Physiol. 37: 461-470.

    Google Scholar 

  • Koka, C.V., Cerny, R.E., Gardner, R.G., Noguchi, T., Fujioka, S., Takatsuto, S. Yoshida, S. and Clouse, S.D. 2000. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol. 122: 85-98.

    Google Scholar 

  • Kouchi, B. and Hata, S. 1993. Isolation and characterization of a novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238: 106-119.

    Google Scholar 

  • Li, J. and Chory, J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929-938.

    Google Scholar 

  • Li, J. and Chory, J. 1999. Brassinosteroid actions in plants. J. Exp. Bot. 50: 275-282.

    Google Scholar 

  • Li, J. and Nam, K.H. 2002. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295: 1299-301.

    Google Scholar 

  • Li, J., Nam, K.H., Vafeados, D. and Chory, J. 2001. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol. 127: 14-22.

    Google Scholar 

  • Li, J., Lease, K., Tax, A.F.E. and Walker, J.C. 2001. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98: 5916-5921.

    Google Scholar 

  • Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E. and Walker J.C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110: 213-222.

    Google Scholar 

  • Mandava, N.B. 1988. Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 23-52.

    Google Scholar 

  • Man-Ho, O., Romanow, W.G., Smith, R.C., Zamsiki, E, Sasse, J. and Clous, S.D. 1998. Soybean BRU1 encode a functional xyloglucan endotransglycosylase that is highly expressed in inner epicotyl tissues during brassinosteroid-promoted elongation. Plant Cell Physiol. 39: 124-130.

    Google Scholar 

  • Marinissen, M.J. and Gutkind, J.S. 2001. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 22: 368-376.

    Google Scholar 

  • Müssig, C., Fischer, S. and Altmann, T. 2002. Brassinosteroidregulated gene expression. Plant Physiol. 129: 1241-1251.

    Google Scholar 

  • Nam, K.H. and Li, J. 2002. BRI1/BAK1, a receptor pair mediating brassinosteroid signaling. Cell 110: 203-212.

    Google Scholar 

  • Ohta, S., Mita, Hattori, T. and Nakamura, K. 1990. Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31: 805-813.

    Google Scholar 

  • Ruan, Y., Gilmore, J. and Conner, T. 1998. Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J. 15: 821-833.

    Google Scholar 

  • Sasse, J.M. 1997. Recent progress in brassinosteroid research. Physiol. Plant. 100: 696-701.

    Google Scholar 

  • Schumacher, K. and Chory, J. 2000. Brassinosteroid signal transduction: still casting the actors. Curr. Opin. Plant Biol. 3: 79-84.

    Google Scholar 

  • Seki, M., Narusaki, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61-72.

    Google Scholar 

  • Uozu, S., Tanaka-Ueguchi, M., Kitano, H., Hattori, K. and Matsuoka, M. 2000. Characterization of XET-related genes of rice. Plant Physiol. 122: 853-859.

    Google Scholar 

  • Ullah, H., Chen, J., Wang, S. and Jones, A. 2002. Role of a heterotrimeric g protein in regulation of Arabidopsis seed germination. Plant Physiol. 129: 897-907.

    Google Scholar 

  • Wada, K., Marumo, S., Ikekawa, N., Morisaki, M. and Mori, K. 1981. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol. 22: 323-325.

    Google Scholar 

  • Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C. and Braam, J. 1995. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7: 1555-1567.

    Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H. and Matsuoka, M. 2000. Loss of function of a rice brassinosteroid insensitive1 homology prevents internode elongation and bending of the lamina joint. Plant Cell 12: 1591-1606.

    Google Scholar 

  • Yang, G. and Komatsu, S. 2000. Involvement of calcium-dependent protein kinase in rice lamina inclination caused by brassinolide. Plant Cell Physiol. 41: 1243-1250.

    Google Scholar 

  • Yazaki, J., Kishimoto, N., Nakamura, K., Fuji, F., J. Wu, J., Yamamoto, K., Sakata, K., Sasaki, K. and Kikuchi, S. 2000. Embarking on rice functional genomics via cDNA microarray with 1265 genes: use of 3′UTR probes for specific gene expression analysis. DNA Res. 7: 367-370.

    Google Scholar 

  • Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T. and Chory, J. 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109: 181-191.

    Google Scholar 

  • Yokota, T. and Takahashi, N. 1986. Chemistry, physiology and agricultural application of brassinolide and related steroids. In: M. Bopp (Ed.) Plant Growth Substances, Springer-Verlag, Berlin, pp. 129-138.

    Google Scholar 

  • Zurek, D.M., and Clouse, S.D. 1994. molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean epicotyls. Plant Physiol. 104: 161-170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko Komatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Matsuoka, M., Iwasaki, Y. et al. A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice. Plant Mol Biol 52, 843–854 (2003). https://doi.org/10.1023/A:1025001304994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025001304994

Navigation