Skip to main content
Log in

Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This review provides a brief historical account of how microscopical studies of chloroplasts have contributed to our current knowledge of the structural and functional organization of thylakoid membranes. It starts by tracing the origins of the terms plastid, grana, stroma and chloroplasts to light microscopic studies of 19th century German botanists, and then describes how different types of electron microscopical techniques have added to this field. The most notable contributions of thin section electron microscopy include the elucidation of the 3-D organization of thylakoid membranes, the discovery of prolamellar bodies in etioplasts, and the structural changes in thylakoid architecture that accompany the light-dependent transformation of etioplasts into chloroplasts. Attention is then focused on the roles that freeze-fracture and freeze-etch electron microscopy and immuno electron microscopy have played in defining the extent to which the functional complexes of thylakoids are non-randomly distributed between appressed, grana and non-appressed stroma thylakoids. Studies reporting on how this lateral differentiation can be altered experimentally, and how the spatial organization of functional complexes is affected by alterations in the light environment of plants are also included in this discussion. Finally, the review points to the possible uses of electron microscope tomography techniques in future structural studies of thylakoid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems; discovery, background, implications. Photosynth Res 73: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Allred DR and Staehelin LA (1986) Spatial-organization of the cytochrome b6-f complex within chloroplast thylakoid membranes. Biochim Biophys Acta 849: 94–103

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (2002) Changing concepts about the distribution of Photosystems I and II between grana-appressed and stromaexposed thylakoid membranes. Photosynth Res 73: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach-chloroplasts. Biochim Biophys Acta 593: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Armond PA, Staehelin LA and Arntzen CJ (1977) Spatial relationship of Photosystem-I, Photosystem-II, and light-harvesting complex in chloroplast membranes. J Cell Biol 73:400–418

    Article  PubMed  CAS  Google Scholar 

  • Barbato R, Friso G, Rigoni F, Vecchia FD and Giacometti GM (1992) Structural changes and lateral distribution of Photosystem-II during donor side photoinhibition of thylakoids. J Cell Biol 119: 325–335

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1986) Surface electrical charges and protein phosphorylation. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III: Photosynthetic Membranes and Light Harvesting Systems, Vol 19, pp 653–664. Springer-Verlag, Berlin

    Google Scholar 

  • Brangeon J and Mustardy L (1979) The ontogenetic assembly of intra-chloroplastic lamellae viewed in 3–dimensions. Biol Cell 36: 71–80

    Google Scholar 

  • Branton D (1966) Fracture faces of frozen membranes. Proc Natl Acad Sci USA 55: 1048–1056

    Article  PubMed  CAS  Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL and Weinstein RS (1975) Freezeetching nomenclature. Science 190: 54–56

    PubMed  CAS  Google Scholar 

  • Chapman RL and Staehelin LA (1986) Freeze-fracture (-etch) electron microscopy. In: Todd WJ and Aldrich HC (eds) Ultrastructure Techniques for Microorganisms, pp 213–240. Plenum Publishing Co, New York

    Google Scholar 

  • Cox RP and Anderson B (1981) Lateral and transverse organization of cytochromes in the chloroplast thylakoid membrane. Biochem Biophys Res Comun 103: 1336–1342

    CAS  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    Article  PubMed  CAS  Google Scholar 

  • Falbel TG, Meehl JB and Staehelin LA (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112: 821–832

    Article  PubMed  CAS  Google Scholar 

  • Goodchild DJ, Bjorkman O and Pyliotis NA (1972) Chloroplast ultrastructure, leaf anatomy, and content of chlorophyll and soluble protein in rainforest species. Carnegie InstWashington Yearb 71: 102–107

    Google Scholar 

  • Goodenough UW and Staehelin LA (1971) Structural differentiation of stacked and unstacked chloroplast membranes. Freezeetch electron microscopy of wild-type and mutant strains of Chlamydomonas. J Cell Biol 48: 594–619

    Article  Google Scholar 

  • Gunning B (1965) The greening process in plastids. The structure of the prolamellar body. Protoplasma 60: 111–130

    Article  Google Scholar 

  • Haehnel W, Ratajczak R and Robenek H (1989) Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J Cell Biol 108: 1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Heitz E (1954) Kristallgitterstruktur des Granum junger Chloroplasten von Chlorophytum. Exp Cell Res 7:606–615

    PubMed  CAS  Google Scholar 

  • Henningsen KW and Stummann BM (1982) Use of mutants in the study of chloroplast biogenesis. In: Parthier B and Boulter D (eds) Nucleic Acids and Proteins in Plants II, Vol 14B, pp 597–644. Springer-Verlag, Heidelberg

    Google Scholar 

  • Heslop-Harrison J (1963) Structure and morphogenesis of lamellar systems in grana-containing chloroplasts. I. Membrane structure and lamellar architecture. Planta 60: 243–260

    Article  Google Scholar 

  • Izawa S and Good NE (1966) Effects of salts and electron transport on the conformation of isolated chloroplasts. II. Electron microscopy. Plant Physiol 41: 544–553

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kausche GA and Ruska H (1940) Zur Frage der Chloroplastenstruktur. Naturwissenschaften 28: 303–304

    CAS  Google Scholar 

  • Kirk JTO and Tilney-Bassett RAE (1967) The Plastids. Their Chemistry, Structure, Growth and Inheritance. Freeman, London.

    Google Scholar 

  • Kyle DJ, Staehelin LA and Arntzen CJ (1983) Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation-energy distribution in higher plants. Arch Biochem Biophys 222: 527–541

    Article  PubMed  CAS  Google Scholar 

  • Larsson UK, Jergil B, and Andersson B (1983) Changes in the lateral distribution of the light-harvesting chlorophyll-a/b-protein complex induced by its phosphorylation. Eur J Biochem 136: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Leyon H (1954) The structure of chloroplasts. IV. The development and structure of the Aspedistra chloroplast. Exp Cell Res. 7: 265–266

    Article  PubMed  CAS  Google Scholar 

  • Lütz C (1986) Prolamellar bodies. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III: Photosynthetic Membranes and Light-Harvesting Systems, Vol 19, pp 683–692. Springer-Verlag, Berlin.

    Google Scholar 

  • McDonnel A and Staehelin LA (1980) Adhesion between liposomes mediated by the chlorophyll a-b light-harvesting complex isolated from chloroplast membranes. J Cell Biol 84: 40–56

    Article  PubMed  CAS  Google Scholar 

  • McIntosh JR (2001) Electron microscopy of cells: a new beginning for a new century. J Cell Biol 153: F25–F32

    Article  PubMed  CAS  Google Scholar 

  • Menke W (1962) Structure and chemistry of plastids. Annu Rev Plant Physiol 13: 27–44

    Article  Google Scholar 

  • Menke W (1990) Retrospective of a botanist. Photosynth Res 25: 77–82

    Article  Google Scholar 

  • Miller KR and Staehelin LA (1976) Analysis of thylakoid outer surface: coupling factor is limited to unstacked membrane regions. J Cell Biol 68: 30–47

    Article  PubMed  CAS  Google Scholar 

  • Mustardy L (1996) Development of thylakoid membrane stacking. In: Ort DR and Yocum CF (eds)Oxygenic Photosynthesis: the Light Reactions, Vol 4, pp 59–68. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Olive J and Vallon O (1991) Structural organization of the thylakoid membrane - freeze-fracture and immunocytochemical analysis. J Elec Microsc Tech 18: 360–374

    Article  CAS  Google Scholar 

  • Paolillo DJ (1970) The three dimensional arrangement of intergranal lamellae in chloroplasts. J Cell Sci 6:243–255

    PubMed  Google Scholar 

  • Schimper A (1885).Untersuchungen über die Chlorophyllkörper und die ihnen homologen Gebilde. Jahrbücher Wiss Bot 16: 1–247

    Google Scholar 

  • Seibert M, Dewit M and Staehelin LA (1987) Structural localization of the O2-evolving apparatus to multimeric (tetrameric) particles on the lumenal surface of freeze-etched photosynthetic membranes. J Cell Biol 105: 2257–2265

    Article  PubMed  CAS  Google Scholar 

  • Shaw P, Henwood J, Oliver R and Griffiths T (1985) Immunogold localization of protochlorophyllide oxidoreductase in barley etioplasts. Eur J Cell Biol 39: 50–55

    Google Scholar 

  • Simpson D (1986) Freeze-fracture studies of mutant barley chloroplast membrane. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III: Photosynthetic Membranes and Light-Harvesting Systems, Vol 19, pp 665–674. Springer-Verlag, Berlin

    Google Scholar 

  • Singer SJ and Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  • Staehelin LA (1976) Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol 71: 136–158

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III: Photosynthetic Membranes and Light-Harvesting Systems, Vol 19, pp 1–84. Springer-Verlag, Berlin

    Google Scholar 

  • Staehelin LA and Arntzen CJ (1983) Regulation of chloroplast membrane-function - protein-phosphorylation changes the spatial-organization of membrane-components. J Cell Biol 97: 1327–1337

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA and Probine MC (1970) Structural aspects of cell membranes. In: Preston RD (ed) Advances in Botanical Research, Vol 3, pp 1–52. Academic Press, London

    Google Scholar 

  • Staehelin LA and van der Staay GWM (1996) Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: the Light Reactions, Vol 4, pp 11–30. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Trissl HW and Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18:415–419

    Article  PubMed  CAS  Google Scholar 

  • Vallon O, Wollman FA and Olive J (1986) Lateral distribution of the main protein complexes of the photosynthetic apparatus in Chlamydomonas reinhardtii and in spinach. An immunocytochemical study using intact thylakoid membranes and a PS II-enriched membrane preparation. Photobiochem Photobiophys 12: 203–220

    CAS  Google Scholar 

  • Vallon O, Bulte L, Dainese P, Olive J, Bassi R and Wollman FA (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88: 8262–8266

    Article  PubMed  CAS  Google Scholar 

  • von Mohl H (1837) Untersuchungen über anatomische Verhältnisse des Chlorophylls. Dissertation, W. Michler, University of Tübingen, Germany

    Google Scholar 

  • Wehrmeyer W(1964a) Zur Klärung der structurellen Variabilität der Chloroplastengrana des Spinats in Profil und Aufsicht. Planta 62: 272–293

    Article  Google Scholar 

  • Wehrmeyer W (1964b) Uber Membranübildungsprozesse in Chloroplasten. II. Zur Entstehung der Grana durch Membranüberschiebung. Planta 63: 13–30

    Article  Google Scholar 

  • Wellburn AR (1977) Distribution of chloroplast coupling factor (CF1) particles on plastid membranes during development. Planta 135: 191–198

    Article  CAS  Google Scholar 

  • Wellburn AR (1982) Bioenergetic and ultrastructural changes associated with chloroplast development. Int Rev Cytol 80: 133–191

    Article  CAS  Google Scholar 

  • Zirkle C (1927) The growth and development of plastids in Lunaria vulgaris, Elodea canadensis, and Zea mays. Am J Bot 14: 429–445

    Article  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongates at 3.8 Å resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staehelin, L.A. Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynthesis Research 76, 185–196 (2003). https://doi.org/10.1023/A:1024994525586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024994525586

Navigation