Skip to main content
Log in

The greening process in plastids

1. The structure of the prolamellar body

  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plastids in etiolatedAvena leaves were studied by electron microscopy of thin sectioned material fixed in glutaraldehyde and osmium tetroxide and embedded in Epon. Each plastid contains one—three prolamellar bodies. These are highly ordered systems, the membraneous component of which consists of interconnected tubules lying in the three major axes of a cubic lattice. Where three tubules (one in each axis of the lattice) meet and fuse at the corners of each unit cell, their unit membranes are smoothly confluent so that the principal curvatures of the membrane surface are of opposite sign at every point. A face view of a unit cell shows four tubules delimiting a circular opening of diameter 380 Å. The diameter of the tubules is 210 Å at their narrowest point, i. e. half way along the edges of the unit cells. The plastid stroma penetrates the prolamellar body via the 380 Å openings, and contributes ribosome—like particles to the system. These particles are centrally located, one in each unit cell.

The literature on prolamellar bodies is reviewed, it is concluded that this type of organisation is widespread in plants. Structures with similar geometry are described, and it is suggested that the unit membranes of the lattice are laid down on contours of uniform “field” strength centred on the lattice of ribosome-like particles. The surface area of membrane in a prolamellar body is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Beams, H. W., and R. G. Kessel, 1963: J. Cell Biol.18, 621.

    Google Scholar 

  • Benson, A. A., 1964: Ann. Rev. Plant Physiol.15, 1.

    Google Scholar 

  • Buvat, R., 1959: C. r. Acad. Sci. (Paris)249, 289.

    Google Scholar 

  • —, 1963: Int. Rev. Cytol.14, 41.

    Google Scholar 

  • Camefort, H., 1964: C. r. Acad. Sci. (Paris)258, 2705.

    Google Scholar 

  • Crawley, J. C. W., 1960: Proc. European Regional Conference on Electron Microscopy, Delft, Vol. 2, 1047.

    Google Scholar 

  • Dibb1e, W. E., and H. M. Dintzis, 1960: Biochim. Biophys. Acta37, 152.

    Google Scholar 

  • Eilam, Y., and S. Klein, 1962: J. Cell Biol.14, 169.

    Google Scholar 

  • Eriksson, G., A. Kahn, B. Walles, and D. von Wellstein, 1961: Ber. dtsch. bot. Ges.74, 221.

    Google Scholar 

  • Gerola, F. M., 1959: Nuovo Giorn. Botan. Ital. n. s.66, 506.

    Google Scholar 

  • —, F. Cristofori, and G. Dassu, 1960: Caryologia13, 179.

    Google Scholar 

  • Granick, S., 1961: In “The Cell,” Vol. 2, 489, Eds. Brachet, J., Mirsky, A. E. Pergamon Press.

  • Gunning, B. E. S., 1963: J. Appl. Physics34, 2529.

    Google Scholar 

  • - 1964: 10th Int. Bot. Congr. Abstracts, 212.

  • —, 1965: J. Cell Biol.24, 79.

    Google Scholar 

  • Heitz, E., 1954: Exp. Cell Res.7, 606.

    Google Scholar 

  • —, 1956: Exper.12, 476.

    Google Scholar 

  • —, 1960: Exper.16, 265.

    Google Scholar 

  • Hodge, A. J., 1959: In: “Biophysical Sciences, A Study Programme,” Ed. Oncley, J. L. et al. 331. Wiley.

  • —, J. D. McLean, and F. V. Mercer, 1956: J. Biophys. Biochem. Cytol. 2, 597.

    Google Scholar 

  • Jacobsen, A. B., H. Swift, and L. Bogorad, 1963: J. Cell Biol.17, 557.

    Google Scholar 

  • Klein, S., 1960: J. Biophys. Biochem. Cytol.8, 529.

    Google Scholar 

  • —, G. Bryan, and L. Bogorad, 1964 a: J. Cell Biol.22, 433.

    Google Scholar 

  • —, and L. Bogorad, 1964 b: J. Cell Biol.22, 443.

    Google Scholar 

  • Lefort, M., 1959: Rev. Gén. Botan.66, 461.

    Google Scholar 

  • Leyon, H., 1953 a: Exper. Cell Res.5, 520.

    Google Scholar 

  • —, 1953 b: Exper. Cell Res.7, 265.

    Google Scholar 

  • —, 1954: Exper. Cell Res.7, 609.

    Google Scholar 

  • —, 1956: Svensk. Kemisk Tidskrift68, 70.

    Google Scholar 

  • Mego, J. L., and A. T. Jagendorf, 1961: Biochim. Biophys. Acta53, 237.

    Google Scholar 

  • Menke, W., 1960: Z. Naturforsch.15 b, 800.

    Google Scholar 

  • —, 1962: Z. Naturforsch.17 b, 188.

    Google Scholar 

  • —, 1963: Z. Naturforsch.18 b, 821.

    Google Scholar 

  • Millonig, G., 1961: J. Biophys. Biochem. Cytol.11, 736.

    Google Scholar 

  • Mühlethaler, K., 1956: Protoplasma45, 264.

    Google Scholar 

  • —, and A. Frey-Wyssling, 1959: J. Biophys. Biochem. Cytol.6, 507.

    Google Scholar 

  • Murakami, S., 1960: J. Electron Microscopy9, 91.

    Google Scholar 

  • —, 1962 a: Cytol.27, 49.

    Google Scholar 

  • —, 1962 b: Cytol.27, 140.

    Google Scholar 

  • —, 1962 c: Exper.18, 168.

    Google Scholar 

  • —, and R. Ueda, 1960: Cytol.25, 59.

    Google Scholar 

  • Perner, E. S., 1956 a: Z. Naturforsch.11b, 560.

    Google Scholar 

  • —, 1956 b: Z. Naturforsch.11b, 567.

    Google Scholar 

  • - 1956 c: Electron Microscopy. Proc. Stockholm Conf. 272.

  • —, 1957: Naturwiss. Rundschau10, 6.

    Google Scholar 

  • Reed, W. A., and E. Fawcett, 1964: Science146, 603.

    Google Scholar 

  • Reynolds, E. S., 1963: J. Cell Biol.17, 208.

    Google Scholar 

  • Rossner, W., 1960: Protoplasma52, 580.

    Google Scholar 

  • Sanders, F. K., 1964: In: “Cytology and Cell Physiology”, Ed. Bourne, G. H. Acad. Press 637.

  • Schidlovsky, G., 1960: Proc. European Regional Conf. on Electron Microscopy Delft, Vol. 2, 1042.

    Google Scholar 

  • Schnepf, E., 1962: Protoplasma54, 310.

    Google Scholar 

  • —, 1964: Planta61, 371.

    Google Scholar 

  • Setlow, R. B., and E. C. Pollard, 1962: Molecular Biophysics, Addison-Wesley.

  • Siggia, S., and W. Maxey, 1947: Anal. Chem.19, 1023.

    Google Scholar 

  • Signiol, M., 1961: C. r. Acad. Sci.252, 4177.

    Google Scholar 

  • Sitte, P., 1961: Protoplasma53, 438.

    Google Scholar 

  • Spiekermann, R., 1957: Protoplasma48, 303.

    Google Scholar 

  • Strugger, S., 1957 a: Protoplasma48, 360.

    Google Scholar 

  • —, 1957 b: Z. Naturforsch.12 b, 280.

    Google Scholar 

  • —, and L. Kriger, 1960: Protoplasma52, 230.

    Google Scholar 

  • —, and E. Perner, 1956: Protoplasma46, 711.

    Google Scholar 

  • Thornton, R. M., and K. V. Thimann, 1964: J. Cell Biol.20, 345.

    Google Scholar 

  • Virgin, H. I., A. Kahn, and D. von Wettstein, 1963: Photochem. and Photobiol.2, 83.

    Google Scholar 

  • Wellstein, D., von, 1957: Exper. Cell Res.12, 427.

    Google Scholar 

  • —, 1958: In: “The Photochemical Apparatus, Its Structure and Function.” Brook-haven Symp. in Biol. No. 2, 138.

    Google Scholar 

  • - 1959: In: “Developmental Cytology”, 16th Growth Symp. Ed. Rudnick. D., 123.

  • —, and A. Kahn, 1960: Proc. European Regional Conf. on Electron Microscopy, Delft, Vol. 2, 1051.

    Google Scholar 

  • Ziman, J. M., 1960: Electrons and Phonons. Oxford, Clarendon Press.

    Google Scholar 

  • - 1963: Electrons in Metals. A Short Guide to the Fermi Surface. Taylor and Francis.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunning, B.E.S. The greening process in plastids. Protoplasma 60, 111–130 (1965). https://doi.org/10.1007/BF01248133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01248133

Keywords

Navigation