Skip to main content
Log in

The history of photosynthetic thermoluminescence

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A fundamental discovery of photosynthetis research in the 1950s was the detection of thermally stimulated light emission from preilluminated photosynthetic material [Arnold W and Sherwood H (1957) Proc Natl Acad Sci USA 43: 105–114]. This phenomenon, called thermoluminescence (TL), is characteristic of a wide range of materials (minerals, semiconductors, inorganic and organic crystals, and complex biological systems), which share the ability of storing radiant energy in thermally stabilized trap states. The original discovery of TL in dried chloroplasts later proved to be a phenomenon common to all photosynthetic organisms: photosynthetic bacteria, cyanobacteria, algae and higher plants, which can be observed in isolated membrane particles, intact chloroplasts and unicellular organisms, and whole leaves. Following the initial observations considerable effort has been devoted to the identification and characterization of photosynthetic TL components. This work has firmly established the participation of various oxidation states of the water-oxidizing complex, the redox-active tyrosines, and the quinone electron acceptors of Photosystem II (PS II) in the generation of photosynthetic glow curves. Since TL characteristics are very sensitive to subtle changes in the redox properties of the involved electron transport components, the TL method has become a powerful tool in probing a wide range of PS II redox reactions and their modifications by environmental stress effects. Here, the main milestones of research in photosynthetic TL are covered until the present day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold W(1965) An electron-hole picture of photosynthesis. J Phys Chem 69: 788–791

    PubMed  CAS  Google Scholar 

  • Arnold W (1966) Light reaction in green plant photosynthesis: a method of study. Science 154: 1046–1049

    CAS  PubMed  Google Scholar 

  • Arnold W (1991) Experiments. Photosynth Res 27: 73–82

    Article  Google Scholar 

  • Arnold W and Azzi JR (1968) Chlorophyll energy levels and electron flow in photosynthesis. Proc Natl Acad Sci USA 61: 29–35

    Article  PubMed  CAS  Google Scholar 

  • Arnold W and Sherwood HK (1957) Are chloroplasts semiconductors? Proc Natl Acad Sci USA 43: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Arnold W and Sherwood H (1959) Energy storage in chloroplasts. J Phys Chem 63: 2–4

    Article  CAS  Google Scholar 

  • Asami T, Koike H, Inoue Y, Takahashi N, and Yoshida S (1988) Structure-activity relationships and physiological aspects of new photosynthetic electron transport inhibitors, 3–alkylaminoalkyden-2H-pyran-2,4(3H)-diones (APs). Z Naturforsch 43c: 857–861

    CAS  Google Scholar 

  • Banerjee M and Vidyasagar P (1990) Chemical probes for water oxidation cycle of Photosystem II: Part 2–effect of histidine modifiying reagent on thermoluminescence peaks of spinach chloroplasts. Indian J Biochem Biophys 27: 128–180

    Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76: 35–52 (this issue)

    Article  PubMed  Google Scholar 

  • Belyaeva OB (2003) Studies of chlorophyll biosynthesis in Russia. Photosynth Res 76: 405–411 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Bock A, Krieger-Liszkay A, de Zarate IBO, and Schönknecht G (2001) Cl- Channel inhibitors of the arylaminobenzoate type act as Photosystem II herbicides: a functional and structural study. Biochemistry 40: 3273–3281

    Article  PubMed  CAS  Google Scholar 

  • Briantais JM, Ducruet JM, Hodges M, and Krause GH (1996) The effects of low temperature acclimation and photoinhibitory treatments on Photosystem 2 studied by thermoluminescence and fluorescence decay kinetics. Photosynth Res 31: 1–10

    Article  Google Scholar 

  • Burnap RL, Shen J-R, Jursinic PA, Inoue Y, and Sherman LA (1992) Oxygen yield and thermoluminescence characteristics of a cyanobacterium lacking the manganese-stabilizing protein of Photosystem II. Biochemistry 31: 7404–7410

    Article  PubMed  CAS  Google Scholar 

  • Chapman DJ, Vass I, and Barber J (1991) Secondary electron transfer reactions of the isolated Photosystem II reaction centre after reconstitution with plastoquinone-9 and diacylglycerolipids. Biochim Biophys Acta 1057: 391–398

    Article  CAS  Google Scholar 

  • Chen R and Kirsh Y (1981) Analysis of Thermally Stimulated Processes. Pergamon Press, Oxford

    Google Scholar 

  • Delosme R and Joliot P (2002) Period four oscillations in chlorophyll a fluorescence. Photosynth Res 73: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Demeter S and Govindjee (1989) Thermoluminescence in plants. Physiol Planta 75: 121–130

    Article  CAS  Google Scholar 

  • Demeter S and Vass I (1984) Charge accumulation and recombination in Photosystem II studied by thermoluminescence. I. Participation of the primary acceptor Q and secondary acceptor B in the generation of thermoluminescence of chloroplasts. Biochim Biophys Acta 764: 24–32

    Article  CAS  Google Scholar 

  • Demeter S, Herczeg T, Droppa M, and Horváth G (1979) Thermoluminescence characteristics of granal and agranal chloroplasts of maize. FEBS Lett 100: 321–324

    Article  CAS  Google Scholar 

  • Demeter S, Droppa M, Vass I, and Horváth G (1982) Thermoluminescence of chloroplasts in the presence of Photosystem II herbicides. Photobiochem Photobiophys 4: 163–168

    CAS  Google Scholar 

  • Demeter S, Rózsa Zs, Vass I, and Hideg É (1985a) Thermoluminescence study of charge recombination in Photosystem II at low temperatures. II. Oscillatory properties of the Zv and A thermoluminescence bands in chloroplasts dark-adapted for various time periods. Biochim Biophys Acta 809: 379–387

    Article  CAS  Google Scholar 

  • Demeter S, Vass I, Hideg É, and Sallai A (1985b) Comparative thermoluminescence study of triazine-resistant and-susceptible biotypes of Erigeron canadensis L. Biochim Biophys Acta 806: 16–27

    Article  CAS  Google Scholar 

  • Demeter S, Goussias C, Bernát G, Kovács L, and Petrouleas V (1993) Participation of the g = 1.9 and g = 1.82 EPR forms of the semiquinone-iron complex, QA -Fe2+ of Photosystem II in the generation of the Q and C thermoluminescence bands, respectively. FEBS Lett 336: 352–356

    Article  PubMed  CAS  Google Scholar 

  • Demeter S, Janda T, Kovács L, Mende D, and Wiessner W (1995) Effects of in vivo CO2-depletion on electron transport and photoinhibition in the green algae, Chlamydobotrys stellata and Chlamydomonas reinhardtii. Biochim Biophys Acta 1229: 166–174

    Article  Google Scholar 

  • Desai TS (1990) Studies on thermoluminescence, delayed light emission and oxygen evolution from photosynthetic materials: UV effects. Photosynth Res 25: 17–24

    Article  CAS  Google Scholar 

  • Desai TS, Sane PV, and Tatake VG (1975) Thermoluminescence studies on spinach leaves and Euglena. Photochem Photobiol 21: 345–350

    PubMed  CAS  Google Scholar 

  • Desai TS, Tatake VG, and Sane PV (1977) Characterization of the low temperature thermoluminescence band Zv in leaves. An explanation for its variable nature. Biochim Biophys Acta 462: 775–780

    Article  PubMed  CAS  Google Scholar 

  • deVault D and Govindjee (1990) Photosynthetic glow peaks and their relationship with the free energy changes. Photosynth Res 24: 175–181

    CAS  Google Scholar 

  • deVault D, Govindjee, and Arnold W (1983) Energetics of photosynthetic glow peaks. Proc Natl Acad Sci USA 80: 983–987

    Article  PubMed  CAS  Google Scholar 

  • Ducruet J-M and Vavilin DV (1999) Chlorophyll high-temperature thermoluminescence emission as an indicator of oxidative stress: perturbating effects of oxygen and leaf water content. Free Radic Res 31: S187–192

    PubMed  CAS  Google Scholar 

  • Etienne A-L, Ducruet J-M, Ajlani G, and Vernotte C (1990) Comparative studies on electron transfer in Photosystem II of herbicide-resistant mutants from different organisms. Biochim Biophys Acta 1015: 435–440

    Article  CAS  Google Scholar 

  • Fleischman DE (1971) Glow curves from photosynthetic bacteria. Photochem Photobiol 14: 65–70

    CAS  Google Scholar 

  • Garab Gy, Rózsa Zs, and Govindjee (1988) Carbon dioxide affects charge accumulation in leaves. Naturwissenschaften 75: 517–519

    Article  CAS  Google Scholar 

  • Gleiter H, Ohad N, Hirschberg J, Fromme R, Renger G, Koike H, and Inoue Y (1990) An application of thermoluminescence to herbicide studies. Z Naturforsch 45c: 353–358

    CAS  Google Scholar 

  • Gleiter H, Ohad N, Koike H, Hirschberg J, Renger G, and Inoue Y (1992) Thermoluminescence and flash-induced oxygen yield in herbicide resistant mutants of the D1 protein in Synechococcus PCC 7942. Biochim Biophys Acta 1140: 135–143

    Article  PubMed  CAS  Google Scholar 

  • Gleiter H, Haag E, Shen J-R, Eaton-Rye J, Inoue Y, Vermaas WFJ, and Renger G (1994) Functional characterization of mutant strains of the Cyanobacterium Synechocystis sp. PCC 6803 lacking short domain within the large, lumen-exposed loop of the chlorophyll protein CP47 in Photosystem II. Biochemistry 33: 12063–12071

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Várkonyi Zs, Hagio M, Iwaki M, Kovács L, Masamoto K, Itoh S, and Wada H (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QBin the Photosystem II Reaction Center. Biochemistry 41: 3796–3802

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Desai TS, Tatake VG, and Sane PV (1977) A new glow peak in Rhodopseudomonas sphaeroides. Photochem Photobiol 26: 119–122

    Google Scholar 

  • Govindjee, Nakatani HY, Rutherford AW, and Inoue Y (1984) Evidence from thermoluminescence for bicarbonate action on the recombination reactions involving the secondary quinone electron acceptor of Photosystem II. Biochim Biophys Acta 766: 416–423

    Article  CAS  Google Scholar 

  • Govindjee, Koike H, and Inoue Y (1985) Thermoluminescence and oxygen evolution from a thermophilic blue-green alga obtained after single-turnover flashes. Photochem Photobiol 42: 579–585

    CAS  Google Scholar 

  • Govindjee, Knox RS and Amesz J (eds) (1996) Photosynthetic Unit: Antenna and Reaction Centers, a Special Issue dedicated to William A. Arnold. Photosynth Res 48: 1–319

  • Govindjee, Xu CH, Schansker G, and van Rensen JJS (1997) Chloroacetates as inhibitors of Photosystem II: effects on electron acceptor side. J Photochem Photobiol B37: 107–117

    Google Scholar 

  • Hagen C, Pascal AA, Horton P, and Inoue Y (1995) Influence of changes in the photon protective energy dissipation on red light-induced detrapping of the thermoluminescence Z-band. Photochem Photobiol 62: 514–521

    CAS  Google Scholar 

  • Hatano-Iwasaki A, Minagawa J, Inoue Y, and Takahashi Y (2001) Two functionally distinct manganese clusters formed by introducing a mutation in the carboxyl terminus of a Photosystem II reaction center polypeeptide, D1, of the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1504: 299–310

    Article  PubMed  CAS  Google Scholar 

  • Havaux M and Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96: 8762–8767

    Article  PubMed  CAS  Google Scholar 

  • Hegde U and Padhye S (1990) Effect of metal chelators on thermoluminescence peaks of spinach chloroplasts and Photosystem II particles: probing the water oxidation cycle with 8–hydroxyquinoline. Indian J Biochem Biophys 27: 5–8

    PubMed  CAS  Google Scholar 

  • Hegde U, Vozar A, and Demeter S (1993) Modification of histidine residues of Photosystem II by diethyl pyrocarbonate inhibits the electron transfer between the primary (QA) and secondary (QB) quinone acceptors. Z Naturforsch 48c: 896–902

    CAS  Google Scholar 

  • Hideg É and Vass I (1992) The high temperature thermoluminescence band of green tissues originates in the chemiluminescence of chlorophyll promoted by free radicals. In: Murata N (ed) Research in Photosynthesis, Vol III, pp 107–110. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Hideg É and Vass I (1993) The 75 C thermoluminescence band of green tissues: Chemiluminescence from membrane-chlorophyll interaction. Photochem Photobiol 58: 280–283

    CAS  Google Scholar 

  • Hideg É, Sass L, Barbato R, and Vass I (1993) Inactivation of photosynthetic oxygen evolution by UV-B irradiation: a thermoluminescence study. Photosynth Res 38: 455–462

    Article  CAS  Google Scholar 

  • Homann PH (1993) Thermoluminescence properties of the S2–state in chloride-depleted water oxidizing complexes after reconstituting treatments with various monovalent anions. Photosynth Res 38: 395–400

    Article  CAS  Google Scholar 

  • Homann PH and Madabusi LV (1993) Modification of the thermoluminescence properties of Ca2+ depleted Photosystem II membranes by the 23 kDa extrinsic polypeptide and by oligocarboxylic acids. Photosynth Res 35: 29–39

    Article  CAS  Google Scholar 

  • Homann PH, Gleiter H, Ono T-A, and Inoue Y (1986) Storage of abnormal oxidants ‘∑1’, ‘∑2’ and ‘∑3’ in photosynthetic water oxidases inhibited by Cl--removal. Biochim Biophys Acta 850: 10–20

    Article  CAS  Google Scholar 

  • Horváth G (1986) Usefulness of thermoluminescence in herbicide research. Crit Rev Plant Sci 4: 293–310

    Google Scholar 

  • Horváth G, Droppa M, Fodorpataki L, Istokovics A, Garab G, and Oettmeier W (1996) Acridones: a chemically new group of protonophores. Proc Natl Acad Sci USA 93: 3876–3880

    Article  PubMed  Google Scholar 

  • Horváth G, Arellano JB, Droppa M, and Baron M(1998) Alterations in Photosystem II electron transport as revealed by thermoluminescence of Cu-poisoned chloroplasts. Photosynth Res 57: 175–181

    Article  Google Scholar 

  • Ichikawa T, Inoue Y, and Shibata K (1975) Characteristics of thermoluminescence bands in intact leaves and isolated chloroplasts in relation to the water-splitting activity in photosynthesis. Biochim Biophys Acta 408: 228–239

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y (1976) Manganese catalyst as a possible cation carrier in thermoluminescence. FEBS Lett 72: 279–282

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y (1981) Charging of the A band thermoluminescence dependent on the S3–state in isolated chloroplasts. Biochim Biophys Acta 634: 309–320

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y (1983) Recent advances in the studies of thermoluminescence of Photosystem II. In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, and Satoh K (eds) The Oxygen Evolving System of Photosynthesis, pp 439–450. Academic Press Japan, Tokyo

    Google Scholar 

  • Inoue Y (1995) Photosynthetic thermoluminescence as a simple probe of Photosystem II electron transport. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 93–107. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Inoue Y and Shibata K (1977a) Oscillation of thermoluminescence at medium low temperature. FEBS Lett 85: 192–197

    Google Scholar 

  • Inoue Y and Shibata K (1977b) Thermoluminescence bands of chloroplasts as characterized by flash excitation: Proc Fourth Int Cong Photosynth 211–221

  • Inoue Y and Shibata K (1982) Thermoluminescence from photosynthetic apparatus. In: Govindjee (ed) Photosynthesis: Energy Conversion by Plants and Bacteria, pp 507–533. Academic Press, New York

    Google Scholar 

  • Inoue Y, Ichikawa T, and Shibata K (1976) Development of thermoluminescence bands during greening of wheat leaves under continuous and intermittent illumination. Photochem Photobiol 23: 125–130

    PubMed  CAS  Google Scholar 

  • Inoue Y, Yamasita T, Kobayashi Y, and Shibata K (1977) Thermoluminescene changes during inactivation and reactivation of the oxygen-evolving system in isolated chloroplasts. FEBS Lett 82: 303–306

    Article  PubMed  CAS  Google Scholar 

  • Janda T, Szalai G, and Paldi E (2000) Thermoluminescence investigation of low temperature stress in maize. Photosynthetica 38: 635–639

    Article  Google Scholar 

  • Johnson G and Krieger A (1994) Thermoluminescence as a probe of Photosystem II in intact leaves: non-photochemical fluorescence quenching in peas grown in an intermittent light regime. Photosynth Res 41: 371–379

    Article  CAS  Google Scholar 

  • Johnson GN, Boussac A, and Rutherford AW (1994) The origin of 40-50 °C thermoluminescence bands in Photosystem II. Biochim Biophys Acta 1184: 85–92

    Article  CAS  Google Scholar 

  • Joliot P (2003) Period-four oscillations of the flash-induced oxygen formation in photosynthesis. Photosynth Res 76: 65–72 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Keren N, Gong H, and Ohad I (1995) Oscillations of reaction center II-D1 protein degradation in vivo induced by repetitive light flashes. Correlation between the level of RC II-QB-and protein degradation in low light. J Biol Chem 270: 806–814

    Article  PubMed  CAS  Google Scholar 

  • Koike H and Inoue Y (1987) Temperature dependence of the S-state transition in a thermophilic cyanobacterium measured by thermoluminescence. In: Biggins J (ed) Progress in Photosynthesis Research, pp 645–648. Martinus Nijhoff Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Koike H, Asami T, Yoshida S, Takahashi N, and Inoue Y (1989) A new-type Photosystem II inhibitor which blocks electron transport in water-oxidation system. Z Naturforsch 44c: 271–279

    CAS  Google Scholar 

  • Kovács L, Hegde U, Padhye S, Bernát G, and Demeter S (1996) Effects of potassium-(picrate)-(18–crown-6) on the photosynthetic electron transport. Z Naturforsch C 51: 539–547

    Google Scholar 

  • Kramer DM, Roffey RA, Govindjee, and Sayre RT (1994) The AT thermoluminescence band from Chlamydomonas reinhardtii and the effects of mutagenesis of histidine residues on the donor side of the Photosystem II D1 polypeptide. Biochim Biophys Acta 1185: 228–237

    Article  CAS  Google Scholar 

  • Krieger A, Weis E, and Demeter S (1993) Low-pH-induced Ca2+ ion release in the water-splitting system is accompanied by a shift in the midpoint redox potential of the primary quinone acceptor QA. Biochim Biophys Acta 1144: 411–418

    Article  CAS  Google Scholar 

  • Krieger A, Rutherford AW, and Jegerschöld C (1998) Thermoluminescence measurements on chloride-depleted and calciumdepleted Photosystem II.Biochim Biophys Acta 1364: 46–54

    Article  PubMed  CAS  Google Scholar 

  • Lurie S and Bertsch W (1974a) Thermoluminescence studies on photosynthetic energy conversion. I. Evidence for three types of energy storage by photoreaction II of higher plants. Biochim Biophys Acta 357: 420–428

    Article  PubMed  CAS  Google Scholar 

  • Lurie S and Bertsch W (1974b) Thermoluminescence studies on photosynthetic energy conversion. II. Activation energies for three energy storage states associated with photoreaction II of higher plants. Biochim Biophys Acta 357: 429–438

    Article  PubMed  CAS  Google Scholar 

  • Mäenpää P, Miranda T, Tyystjärvi E, Tyystjärvi T, Govindjee, Ducruet J-M, Etienne A-L, and Kirilovsky D (1995) A mutation in the D-E loop of D1 modifies the stability of the S2QA - and S2QB - states in Photosystem II. Plant Physiol 107: 187–197

    PubMed  Google Scholar 

  • Marder JB, Droppa M, Caspi V, Raskin VI, and Horvath G (1998) Light-independent thermoluminescence from thylakoids of greening barley leaves. Evidence for involvement of oxygen radicals and free chlorophyll. Physiol Plant 104: 713–719

    Article  CAS  Google Scholar 

  • Mayes SR, Dubbs JM, Vass I, Hideg É, Nagy L, and Barber J (1993) Further characterization of the psbH locus of Synechocystis sp. PCC 6803: Inactivation of psbH impairs QA to QB electron transport in Photosystem 2. Biochemistry 32: 1454–1465

    Article  PubMed  CAS  Google Scholar 

  • Miranda T and Ducruet J-M (1995) Characterization of the chlorophyll thermoluminescence afterglow in dark-adapted or far-redilluminated plant leaves.Plant Physiol Biochem 33: 689–699

    CAS  Google Scholar 

  • Misra AN, Ramaswamy NK, and Desai TS (1997) Thermoluminescence studies on the photoinhibition of pothos leaf discs at chilling, room and high temperature. J Photochem Photobiol B38: 164–168

    Google Scholar 

  • Mohanty N, Vass I, and Demeter S (1989a) Copper toxicity affects Photosystem II electron transport at the secondary quinone acceptor QB. Plant Physiol 90: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Mohanty N, Vass I, and Demeter S (1989b) Impairment of Photosystem II photochemistry at the level of the secondary quinone electron acceptor, QB in cobalt, nickel and zinc-toxicated chloroplasts. Physiol Plant 76: 386–390

    CAS  Google Scholar 

  • Nixon PJ, Komenda J, Barber J, Deak Zs, Vass I, and Diner BA (1995) Deletion of the PEST-like region of Photosystem two modifies the QB-binding pocket but does not prevent rapid turnover of D1. J Biol Chem 270: 14919–14927

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Inoue Y, and Sonoike K (1992) Thermoluminescence emission at liquid helium temperature from photosynthetic apparatus and purified pigments. Biochim Biophys Acta 1141: 18–24

    Google Scholar 

  • Ohad I, Koike H, Schochat S, and Inoue Y (1988) Changes in the porperties of reaction center II during the initial stages of photoinhibition as revealed by thermoluminescence measurements. Biochim Biophys Acta 933: 288–298

    Article  CAS  Google Scholar 

  • Ohad I, Adir N, Koike H, Kyle DJ, and Inoue Y (1990) Mechanism of photoinhibition in vivo. A reversible light-induced conformational change of reaction center II is related to an irreversible modification of the D1 protein. J Biol Chem 265: 1972–1979

    PubMed  CAS  Google Scholar 

  • Ono T (2000) Effects of lanthanide substitution at Ca2+-site on the properties of the oxygen evolving center of Photosystem II. Journal of Inorganic Biochemistry 82: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Ono T and Inoue Y (1985) S-state turnover in the O2-evolving system of CaCl2-washed Photosystem II particles depleted of three peripheral proteins as measured by thermoluminescence: removal of 33 kDa protein inhibits S3 to S4 transition. Biochim Biophys Acta 805: 331–340

    Google Scholar 

  • Ono T and Inoue Y (1988) Abnormal S-state turnovers in NH3–binding Mn centers of photosynthetic O2 evolving system. Arch Biochem Biophys 264: 82–92

    Article  PubMed  CAS  Google Scholar 

  • Ono T and Inoue Y (1989) Removal of Ca by pH 3.0 treatment inhibits S2 to S3 transition in photosynthetic oxygen evolution system. Biochim Biophys Acta 973: 443–449

    CAS  Google Scholar 

  • Ono T and Inoue Y (1991) Biochemical evidence for histidine oxidation in Photosystem II depleted of the Mn-cluster for O2-evolution. FEBS Lett 278: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Randall JT and Wilkins MHF (1945) Phosphorescence and electron traps. I. The study of trap distributions. Proc R Soc London Ser A184: 366–369

    Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, and Lavergne J (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41: 8508–8517

    Article  PubMed  CAS  Google Scholar 

  • Renger G and Inoue Y (1983) Studies on the mechanism of ADRY agents (Agents Accelerating the Deactivation Reactions of watersplitting enzyme Y) on thermoluminescence emission. Biochim Biophys Acta 725: 146–154

    Article  CAS  Google Scholar 

  • Rózsa Zs and Demeter S (1982) Effect of inactivation of the oxygen-evolving system on the thermoluminescence of isolated chloroplasts. Photochem Photobiol 36: 705–708

    Google Scholar 

  • Rózsa Zs, Droppa M, and Horváth G (1989) On the origin of the thermoluminescence band at around +50 °C in isolated subchloroplast particles. Biochim Biophys Acta 973: 350–353

    Google Scholar 

  • Rubin AB and Venediktov PS (1969) Storage of light energy by photosynthetizing organisms at low temperature. Biofiz 14: 105–109

    CAS  Google Scholar 

  • Rutherford AW, Crofts AR, and Inoue Y (1982) Thermoluminescence as a probe of Photosystem II photochemistry: the origin of the flash-induced glow peaks. Biochim Biophys Acta 682: 457–465

    Article  CAS  Google Scholar 

  • Rutherford AW, Govindjee, and Inoue Y (1984) Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. Proc Natl Acad Sci USA 81: 1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Renger G, Koike H, and Inoue Y (1985) Thermoluminescence as a probe of PS II: The redox and protonation state of the secondary acceptor quinone and the O2 evolving enzyme. Biochim Biophys Acta 767: 548–556

    Google Scholar 

  • Sane PV and Rutherford AW (1986) Thermoluminescence from photosynthetic membranes. In: Govindjee, Amesz J, and Fork DC (eds) Light Emission by Plants and Bacteria, pp 329–360. Academic Press, Orlando, Florida

    Google Scholar 

  • Sane PV, Desai TS, Tatake VG, and Govindjee (1977) On the origin of glow peaks in Euglena cells, spinach chloroplasts and subchloroplast fragments enriched in system I or II. Photochem Photobiol 26: 33–39

    CAS  Google Scholar 

  • Sane PV, Govindjee, Desai TS, and Tatake VG (1984) Characterization of glow peaks of chloroplast membranes. Part III - Effects of bicarbonate depletion on peaks I and II associates with Photosystem II. Indian J Exp Biol 22: 267–269

    CAS  Google Scholar 

  • Sass L, Csintalan Zs, Tuba Z, and Vass I (1996) Thermoluminescence studies on the function of Photosystem II in the desiccation tolerant lichen Cladonia convoluta. Photosynth Res 48: 205–212

    Article  CAS  Google Scholar 

  • Shuvalov VA and Litvin FF (1969) Mechanism of prolonged afterluminescence of plant leaves and energy storage in the photosynthetic reaction centers. Mol Biol 3: 59–73

    CAS  Google Scholar 

  • Skotnica J, Matouskova M, Naus J, Lazar D, and Dvorak L (2000) Thermoluminescence and fluorescence study of changes in Photosystem II photochemistry in desiccating barley leaves. Photosynth Res 65: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K, Koike H, Enami I, and Inoue Y (1991) The emission spectra of thermoluminescence from photosynthetic apparatus. Biochim Biophys Acta 1058: 121–130

    Article  CAS  Google Scholar 

  • Stallaert VM, Ducruet J-M, Tavernier E, and Blein J-P (1995) Lipid peroxidation in tobacco leaves treated with the elicitor cryptogein: evaluation by high-temperature thermoluminescence emission and chlorophyll fluorescence. Biochim Biophys Acta 1229: 290–295

    Article  Google Scholar 

  • Strehler B and Arnold W (1951) Light production by green plants. J Gen Physiol 34: 809–820

    Article  PubMed  CAS  Google Scholar 

  • Takács Z, Csintalan Zs, Sass L, Laitat E, Vass I, and Tuba Z (1999) UV-B tolerance of bryophyte species with different degree of desiccation tolerance. J Photochem Photobiol B48, 210–216

    Google Scholar 

  • Tatake VG, Desai TS, Govindjee, and Sane PV (1981) Energy storage states of photosynthetic membranes: activation energies and lifetimes of electrons in the trap states by thermoluminescence method. Photochem Photobiol 33: 243–250

    Google Scholar 

  • Thomas S, Banerjee M, Vidyasagar PB, Hedge U, and Shaligram AD (1996) Analysis of thermoluminescence glow curves obtained from diethylpyrocarbonate-treated spinach thylakoid preparations using the general order kinetics model. J Photochem Photobiol 33: 69–72

    Article  CAS  Google Scholar 

  • Tollin G and Calvin M (1957) The luminescence of chlorophyllcontaining plant material. Proc Natl Acad Sci USA 43: 895–908

    Article  PubMed  CAS  Google Scholar 

  • Turcsányi E and Vass I (2000) Inhibition of Photosynthetic electron transport by UV-A radiation targets the Photosystem II complex. Photochem Photobiol 72: 513–520

    Article  PubMed  Google Scholar 

  • Tyystjärvi E and Vass I (2004) Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence. In: Papageorgiou G and Govindjee (eds) Chlorophyll Fluorescence: A Signature of Photosynthesis (in press)

  • Vass I and Demeter S (1982) Classification of Photosystem II inhibitors by thermodynamic characterization of thermoluminescence of inhibitor-treated chloroplasts. Biochim Biophys Acta 682: 496–499

    Article  CAS  Google Scholar 

  • Vass I and Demeter S (1983) Energetic characterization of the thermoluminescence in isolated chloroplasts. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol I, pp 737–740. Martinus Nijhoff/Dr W. Junk Publishers, The Hague

    Google Scholar 

  • Vass I and Govindjee (1996) Thermoluminescence from the photosynthetic apparatus. Photosynth Res 48: 117–126

    Article  CAS  Google Scholar 

  • Vass I and Inoue Y (1986) pH dependent stabilization of S2QA - and S2QB - charge pairs studied by thermoluminescence. Photosynth Res 10: 431–436

    Article  CAS  Google Scholar 

  • Vass I and Inoue Y (1992) Thermoluminescence in the study of Photosystem two. In: Barber J (ed) Topics in Photosynthesis. Volume 11. The Photosystems: Structure, Function and Molecular Biology, pp 259–294. Elsevier, Amsterdam

    Google Scholar 

  • Vass I, Horvath G, Herczeg T, and Demeter S (1981) Photosynthetic energy conservation investigated by thermoluminescence. Activation energies and half-lives of thermoluminescence bands of chloroplasts determined by mathematical resolution of glow curves. Biochim Biophys Acta 634: 140–152

    Article  PubMed  CAS  Google Scholar 

  • Vass I, Rózsa Zs, and Demeter S (1985) Flash induced oscillation of the low temperature thermoluminescence band Zv in chloroplasts. Photochem Photobiol 40: 407–409

    Google Scholar 

  • Vass I, Ono TA, and Inoue Y (1987) Removal of 33 kDa protein specifically stabilizes the S2QA - charge pair in Photosystem II. FEBS Lett 211: 215–220

    Article  CAS  Google Scholar 

  • Vass I, Mohanty N, and Demeter S (1988) Photoinhibition of electron transport activity of Photosystem II in isolated thylakoids studied by thermoluminescence and delayed luminescence. Z Naturforsch 43c: 871–876

    CAS  Google Scholar 

  • Vass I, Chapman DJ, and Barber J (1989) Thermoluminescence properties of the isolated Photosystem two reaction centre. Photosynth Res 22: 295–301

    Article  CAS  Google Scholar 

  • Vass I, Tso J, and Dimukes GC (1990) A new mechanism-based inhibitor of photosynthetic water oxidation: acetone hydrazone. 2. Kinetic probes. Biochemistry 29: 7767–7773

    Article  PubMed  CAS  Google Scholar 

  • Vass I, Cook KM, Deák Zs, Mayes SR, and Barber J (1992) Thermoluminescence and flash-oxygen characterization of the IC2 deletion mutant of Synechocystis sp. PCC 6803 lacking the Photosystem II 33 kDa protein. Biochim Biophys Acta 1102: 195–201

    Article  CAS  Google Scholar 

  • Vavilin DV and Vermaas WFJ (2000) Mutations in the CD-loop region of the D2 protein in Synechocystis sp. PCC 6803 modify charge recombination pathways in Photosystem II in vivo. Biochemistry 39: 14831–14838

    Article  PubMed  CAS  Google Scholar 

  • Vavilin, DV, Matorin DN, Kafarov RS, Bautina AL and Venediktov PS (1991) High-temperature thermoluminescence of chlorophyll in lipid peroxidation. Biologicheskie Membrany (Moscow) 8: 89–98

    Google Scholar 

  • Vidyasagar PB, Thomas S, Banerjee M, Hedge U, and Shaligram AD (1993) Determination of peak parameters for thermoluminescence glow curves obtained from spinach thylakoid preparations, using mathematical models based on general order kinetics. J Photochem Photobiol B19: 125–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vass, I. The history of photosynthetic thermoluminescence. Photosynthesis Research 76, 303–318 (2003). https://doi.org/10.1023/A:1024989519054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024989519054

Navigation