Skip to main content
Log in

Mouse lipocalin as an enhancer of spermatozoa motility

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The 24p3 protein is a 25 kDa glycoprotein that is secreted into the uterine fluid during the proestrous phase of mice. We assessed the effects on spermatozoa motility and on the functions of mouse spermatozoa using the computer-assisted sperm analysis method, cytochemical staining and detection of the protein tyrosine phosphorylation pattern. Compared with the control cells, sperm motility was stimulated by the addition of 24p3 protein into the medium. Introducing 24p3 protein enhanced progressive motility but did not promote the appearance of hyperactivated movement. The presence of 24p3 protein in the medium did not allow the cells to undergo the capacitated protein tyrosine phosphorylation pattern and acrosome reaction. The tyrosine phosphorylation pattern shows phosphoproteins in the range of Mr 50000–106000 correlated with the sperm progressive motility after the addition of 24p3 protein into the medium. Using flow cytometry, we assessed the changes in the intracellular pH and measured the intracellular cAMP concentration with an immunodetection kit. The results indicated that the elevation in intracellular pH from 6.67 to 6.89, increase of intracellular cAMP accumulation, and protein tyrosine phosphorylation might be the factors in enhancement of sperm motility as the 24p3 protein bound to the spermatozoa. The 24p3 protein may have a role in regulating flagellar motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hraba-Renevey S, Trler H, Kress M, Saloman C, Weil R (1989). Oncogene. 4: 601–608.

    Google Scholar 

  2. Flower DR, North ACT, Attword TK (1991) Biochim. Biophys. Res. Commun. 180: 69–74.

    Google Scholar 

  3. Chu ST, Lin HJ, Huang HL, Chen YH (1998) J. Peptide Res. 52: 390–397.

    Google Scholar 

  4. Meheus LA, Fransen LM, Raymackers JG, Blockx HA, van Bearrmen JJ, van Ban SM, van de Voorde A (1993) J. Immunol. 151: 1535–1547.

    Google Scholar 

  5. Davis TR, Tabatabai L, Bruns K, Hamilto RT, Nilsen-Hamilton M (1991) Biochim. Biophys. Acta. 1095: 145–152

    Google Scholar 

  6. Liu Q, Nilsen-Hamilton M (1995) J. Biol. Chem. 270: 22565–22570.

    Google Scholar 

  7. Cowland JB, Borregarrd N (1997) Genomics 45: 17–23.

    Google Scholar 

  8. Chu ST, Lin HJ, Chen YH (1997) J. Peptide Res. 49: 582–585.

    Google Scholar 

  9. Åkerstrom B, Flower DR, Salier J-P (2000) Biochem. Biophy.Acta. 1482: 1–8.

    Google Scholar 

  10. Huang HL, Chu ST, Chen YH (1999) J. Endocrinol. 162: 11–19.

    Google Scholar 

  11. Chu ST, Huang HL, Chen JM, Chen YH (1996) Biochem. J. 316: 545–550.

    Google Scholar 

  12. Chu ST, Lee YC, Nein KM, Chen YH (2000) Mol. Reprod.Dev. 57: 26–36.

    Google Scholar 

  13. Pusch HH (1987) Andrologia. 19: 514–527.

    Google Scholar 

  14. Fraser LR (1995) Human. Reprod. Suppl. 10: 22–30.

    Google Scholar 

  15. Robertson L, Kay VJ (1998) Human. Reprod. Update 4: 776–786.

    Google Scholar 

  16. Jaiswal BS, Majumder GG (1998) Reprod. Fertil. Dev. 10: 299–307.

    Google Scholar 

  17. Leclerc P, de Lamirande E, Gagnon C (1996) Biol. Reprod. 55: 684–692.

    Google Scholar 

  18. Lee MA, Storey BT (1986) Biol. Reprod. 34: 349–356.

    Google Scholar 

  19. Neill JM, Olds-Clarke P. (1987) Gamete Res. 18: 121–140.

    Google Scholar 

  20. Si Y, Olds-Clark P. (2000) Biol. Reprod. 62: 1231–1239.

    Google Scholar 

  21. Aarons D, Battle T, Boettger-Tong H, Holt G, Poirier GR (1991) Mol. Reprod. Dev. 30: 258–264.

    Google Scholar 

  22. Moller CC, Bleil JD, Kinloch RA, Wassarman PM (1990) Dev.Biol. 137: 276–286.

    Google Scholar 

  23. Màriàn T, Krasznai Z, Balkay L, Emri M, Tròn L (1997) Cytometry 27: 374–382.

    Google Scholar 

  24. Cross NL, Razy-Fanlkne RP (1997) Biol. Reprod. 56: 1169–1174.

    Google Scholar 

  25. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS (1995) Development 121: 1129–1137.

    Google Scholar 

  26. Laemmli UK (1970) Nature 227: 680–685.

    Google Scholar 

  27. Towbin H, Staehelin TH, Gordan J (1979) Proc. Natl. Acad. Sci. USA. 76: 4350–4354.

    Google Scholar 

  28. Cancel AM, Lobdell D, Mendola P, Perreault D (2000) Human. Reprod. 15: 1322–1328.

    Google Scholar 

  29. Galantino-Homer HL, Visconti PE, Kopf GS (1997) Biol. Reprod. 56: 707–719.

    Google Scholar 

  30. Lee HC, Johnson C, Epel D (1983) Dev. Biol. 95: 31–45.

    Google Scholar 

  31. Kalab P, Visconti PE, Leclerc P, Kopf GS (1994) J. Biol. Chem. 269: 3810–3817.

    Google Scholar 

  32. Fraser LR, McDermott CA (1992) J. Reprod. Fertil. 96: 363–377.

    Google Scholar 

  33. Carr DW, Acoh TS (1989) Biol. Reprod. 41: 907–920.

    Google Scholar 

  34. Beltran C, Zapata O, Darszon A (1996) Biochemistry. 35: 7591–7598.

    Google Scholar 

  35. Tash JS, Bracho GE (1998) Biochem. Biophy. Res. Commun. 251: 557–563.

    Google Scholar 

  36. Darszon A, Labarca P, Nishigaki T, Espinosa F (1999) Physiol. Rev. 79: 481–510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YC., Liao, CJ., Li, PT. et al. Mouse lipocalin as an enhancer of spermatozoa motility. Mol Biol Rep 30, 165–172 (2003). https://doi.org/10.1023/A:1024985024661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024985024661

Navigation