Skip to main content
Log in

Quantum-Chemical Study of Anisole Molecule

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The potential functions of internal rotation around the C\({\text{C}}_{sp^2 } \)-O bond in the C6H5OCH3 molecule were obtained by HF/6-31G(d), MP2(f)/6-31G(d), and B3LYP/6-31(d) calculations. Hartree-Fock calculations reveal a fourfold barrier to internal rotation around the C\({\text{C}}_{sp^2 } \)-O bond. The MP2 and B3LYP calculations reveal a twofold barrier with a height of 7.78 and 10.70 kJ mol- 1, respectively (corrected for the zero vibration energy). The molecular geometries, first Koopmans ionization potentials, and dipole moments are reported. Calculations for liquid anisole in the self-consistent reactive field (SCRF) continual model give the results that only slightly differ from the results obtained for the isolated molecule in a vacuum. Within the framework of the Natural Bond Orbitals formalism, the following parameters were determined: energy, degree of hybridization, and population of oxygen lone electron pairs and energy of their interaction with antibonding π* orbitals of the aromatic ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Naumov, V.A. and Kataeva, O.N., Molekulyarnoe stroenie organicheskikh soedinenii kisloroda i sery v gazovoi faze (Molecular Structure of Organic Compounds of Oxygen and Sulfur in the Gas Phase), Moscow: Nauka, 1990.

    Google Scholar 

  2. Seip, H.M. and Seip, R., Acta Chem. Scand. 1973, vol. 27, no. 10, p. 4024.

    Google Scholar 

  3. Onda, M., Toda, A., Mori, S., and Yamaguchi, I., J. Mol. Struct. 1986, vol. 144, no. 1/2, p. 47.

    Google Scholar 

  4. Maier, J.P. and Turner, D.W., J. Chem. Soc., Faraday Trans. 2 1973, vol. 69, no. 4, p. 521.

    Google Scholar 

  5. Dewar, P.S., Ernstbrunner, E., Gilmore, J.R., Godfrey, M., and Mellor, J.M., Tetrahedron 1974, vol. 30, no. 15, p. 2455.

    Google Scholar 

  6. Le Fevre, R.J.W., Radford, D.V., and Sullivan, E.P.A., Aust. J. Chem. 1967, vol. 20, no. 4, p. 623.

    Google Scholar 

  7. Aroney, M.J., Le Fevre, R.J.W., Pierens, R.K., and The, M.G.N., J. Chem. Soc. B 1969, no. 6, p. 666.

    Google Scholar 

  8. Schaefer, T. and Sebastian, R., Can. J. Chem. 1989, vol. 67, no. 7, p. 1148.

    Google Scholar 

  9. Allen, J. and Fewster, S., Internal Rotation of Molecules Orville-Thomas, W.J., Ed., London: Wiley, 1974. Translated under the title Vnutrennee vrashchenie molekul Moscow: Mir, 1977, p. 211.

    Google Scholar 

  10. Frige, H. and Klessinger, M., Chem. Ber. 1979, vol. 112, no. 5, p. 1614.

    Google Scholar 

  11. Konshin, H. and Tylli, H., Chem. Phys. Lett. 1984, vol. 108, no. 2, p. 191.

    Google Scholar 

  12. Konschin, H. and Lindblad, M., J. Mol. Struct. 1983, vol. 104, nos. 1-2, p. 37.

    Google Scholar 

  13. Owen, N.L. and Hester, R.E., Spectrochim. Acta, Part A 1969, vol. 25, no. 2, p. 343.

    Google Scholar 

  14. Tylli, H. and Konschin, H., J. Mol. Struct. 1977, vol. 42, no. 1, p. 7.

    Google Scholar 

  15. Konschin, H., Tylli, H., and Grundfelt-Forsius, C., J. Mol. Struct. 1981, vol. 77, nos. 1-2, p. 51.

    Google Scholar 

  16. Vincent, M.A. and Hillier, I.H., Chem. Phys. 1990, vol. 140, no. 1, p. 35.

    Google Scholar 

  17. Spellmeyer, D.C., Grootenhuis, P.D.J., Miller, M.D., Kuyper, L.F., and Kollman, P.A., J. Phys. Chem. 1990, vol. 94, no. 11, p. 4483.

    Google Scholar 

  18. Nicholas, J.B. and Hay, B.P., J. Phys. Chem. 1999, vol. 103, no. 48, p. 9815.

    Google Scholar 

  19. Hehre, W.J., Radom, L., Schleyer, P.v.R., and Pople, J.A., Ab initio Molecular Orbital Theory New York: Wiley, 1986.

    Google Scholar 

  20. Møller, Ch. and Plesset, M.S., Phys. Rev. 1934, vol. 46, no. 4, p. 618.

    Google Scholar 

  21. Parr, R.G. and Yang, W., Density Functional Theory of Atoms and Molecules New York: Oxford Univ. Press, 1989.

    Google Scholar 

  22. Becke, A.D., J. Chem. Phys. 1993, vol. 98, no. 7, p. 5648.

    Google Scholar 

  23. Stephens, P.J., Delvin, C.F., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem. 1994, vol. 98, no. 45, p. 11 623.

    Google Scholar 

  24. Tapia, O. and Goskinski, O., Mol. Phys. 1975, vol. 29, no. 6, p. 1653.

    Google Scholar 

  25. Wong, M.W., Frisch, M.J., and Wiberg, K.B., J. Am. Chem. Soc. 1991, vol. 113, no. 13, p. 4776.

    Google Scholar 

  26. Abronin, I.A., Burshtein, K.Ya., and Zhidomirov, G.M., Zh. Strukt. Khim. 1980, vol. 21, no. 2, p. 145.

    Google Scholar 

  27. Hariharan, P.C. and Pople, J.A., Theor. Chim. Acta 1973, vol. 28, no. 3, p. 213.

    Google Scholar 

  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Adamo, C., Clifford, S., Ocherski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T.A., Al-Laham, M.A., Peng, C.Y., Nanayakara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S., and Pople, J.A., GAUSSIAN 98W Rev. A.7, Pittsburgh: Gaussian, 1998.

    Google Scholar 

  29. Weinhold, F. and Carpenter, J.E., The Structure of Small Molecules and Ions Naaman R. and Vager, Z., Eds., New York: Plenum, 1988, p. 227.

    Google Scholar 

  30. Reed, A.E., Curtiss, L.A., and Weinhold, F., Chem. Rev. 1988, vol. 88, no. 6, p. 899.

    Google Scholar 

  31. Nemukhin, A.V. and Veinkhol'd, F., Ross. Khim. Zh. 1994, vol. 38, no. 6, p. 5.

    Google Scholar 

  32. Glendening, E.D., Reed, A.E., Carpenter, J.E., and Weinhold, F., GAUSSIAN 98W Rev. A.7, NBO Ver. 3.1, Pittsburgh: Gaussian, 1998.

    Google Scholar 

  33. Scott, A.P. and Radom, L., J. Phys. Chem. 1996, vol. 100, no. 41, p. 16 502.

    Google Scholar 

  34. van Leenuwen, R. and Baerends, E.J., Phys. Rev. A 1994, vol. 49, no. 4, p. 2421.

    Google Scholar 

  35. Osipov, O.A., Minkin, V.I., and Garnovskii, A.D., Spravochnik po dipol'nym momentam (Handbook on Dipole Moments), Moscow: Vysshaya Shkola, 1971.

    Google Scholar 

  36. Borovikov, Yu.Ya. and Topchii, V.A., Teor. Eksp. Khim. 1975, vol. 11, no. 1, p. 108.

    Google Scholar 

  37. Gordon, A.J. and Ford, R.A., The Chemist's Companion. A Handbook of Practical Data, Techniques, and References New York: Wiley, 1972.

    Google Scholar 

  38. Frisch, A. and Frisch, M.J., GAUSSIAN 98 User's Reference Pittsburgh: Gaussian, 1999.

    Google Scholar 

  39. Reed, A.E., Weinstock, R.B., and Weinhold, F., J. Chem. Phys. 1985, vol. 83, no. 2, p. 735.

    Google Scholar 

  40. Bzhezovskii, V.M., Kalabin, G.A., Aliev, I.A., Trofimov, B.A., Shakhgel'diev, M.A., and Kuliev, A.M., Izv. Akad. Nauk SSSR, Ser. Khim. 1976, no. 9, p. 1999.

    Google Scholar 

  41. Breitmaier, E. and Voelter, W., Carbon-13 NMR Spectroscopy Weinheim: VCH, 1987.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bzhezovskii, V.M., Kapustin, E.G. Quantum-Chemical Study of Anisole Molecule. Russian Journal of General Chemistry 73, 401–407 (2003). https://doi.org/10.1023/A:1024957919954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024957919954

Keywords

Navigation