Skip to main content
Log in

Investigation of CH4 Reforming with CO2 on Meso-Porous Al2O3-Supported Ni Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Meso-porous Al2O3-supported Ni catalysts exhibited the highest activity, stability and excellent coke-resistance ability for CH4 reforming with CO2 among several oxide-supported Ni catalysts (meso-porous Al2O3 (Yas1-2, Yas3-8), γ-Al2O3, α-Al2O3, SiO2, MgO, La2O3, CeO2 and ZrO2). The properties of deposited carbons depended on the properties of the supports, and on the meso-porous Al2O3-supported Ni catalyst, only the intermediate carbon of the reforming reaction formed. XRD and H2-TPR analysis found that mainly spinel NiAl2O4 formed in meso-porous Al2O3 and γ-Al2O3-supported catalysts, while only NiO was detected in α-Al2O3, SiO2, CeO2, La2O3 and ZrO2 supports. The strong interaction between Ni and meso-porous Al2O3 improved the dispersion of Ni, retarded its sintering and improved the activated adsorption of CO2. The coking reaction via CH4 temperature-programed decomposition indicated that meso-porous Al2O3-supported Ni catalysts were less active for carbon formation by CH4 decomposition than Ni/γ-Al2O3 and Ni/α-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rostrup-Nielsen and J-H. BakHansen, J. Catal. 144 (1993) 38.

    Google Scholar 

  2. F. Besenbacher, I. Chorkendorff, B. S. Clausen, B. Hammer, A. M. Molenbroek, J. K. Norskov and I. Stensgaard, Science 279 (1998) 1913.

    Google Scholar 

  3. M. C. J. Bradford and M. A. Vannice, Catal. Rev. Sci. Eng. 41 (1999) 1.

    Google Scholar 

  4. T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki and T. Mori, Appl. Catal. A. 144 (1996) 111.

    Google Scholar 

  5. Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou and Z. Duan, Appl. Catal. A. 213 (2001) 65.

    Google Scholar 

  6. W. Y. Li, K. C. Xie and S. C. Xie, Coal Sci. Technol. 24 (1995) 727.

    Google Scholar 

  7. S. Wang and G. Q. Lu, Appl. Catal. B. 16 (1998) 269.

    Google Scholar 

  8. J. M. Wei, B. Q. Xu, J. L. Li, Z. X. Cheng and Q. M. Zhu, Appl. Catal. A. 196 (2000) L167.

    Google Scholar 

  9. J. M. Wei, B. Q. Xu, Z. X. Cheng, J. L. Li and Q. M. Zhu, Stud. Surf. Sci. Catal. 130 (2000) 3687.

    Google Scholar 

  10. J. M. Wei, B. Q. Xu, J. L. Li, Z. X. Cheng and Q. M. Zhu, Fuel Chem. Div. Prep. 46 (2001) 97.

    Google Scholar 

  11. J. M. Wei, B. Q. Xu, J. L. Li, K. Q. Sun and Q. M. Zhu, Am. Chem. Soc. Div. Petrol. Chem. Prepr. 45 (2000) 118.

    Google Scholar 

  12. B. Q. Xu, J. M. Wei, H. Y. Wang, K. Q. Sun and Q. M. Zhu, Catal. Today 68 (2001) 217.

    Google Scholar 

  13. K.-S. Hwang, H. Y. Zhu and G. Q. Lu, Catal. Today 68 (2001) 183.

    Google Scholar 

  14. G. Bergeret and P. Gallezot, in: Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knozinger and J. Weitkamp (Weinheim: VCH, vol. 2, 1997), pp. 439–464.

    Google Scholar 

  15. L. Kepinski, S. Stasinska and T. Borowiecki, Carbon 38 (2000) 1845.

    Google Scholar 

  16. O. Yamazaki, T. Nozaki, K. Omata and K. Fujimoto, Chem. Lett. (1992) 1953.

  17. K. Tomishige, Y. Chen and K. Fujimoto, J. Catal. 181 (1999) 91.

    Google Scholar 

  18. K. Tomishige and K. Fujimoto, Sekiyu Gakkaishi 44 (2001) 65.

    Google Scholar 

  19. D. L. Trimm, Catal. Today 49 (1999) 3.

    Google Scholar 

  20. V. C. H. Kroll, H. M. Swaan and C. Mirodatos, J. Catal. 161 (1996) 409.

    Google Scholar 

  21. J. Barbier, P. Marecot, N. Martin, L. Elassal and R. Maurel, Stud. Surf. Sci. Catal. 6 (1980) 53.

    Google Scholar 

  22. R. Bacaud, H. Charcosset, M. Guenin, R. Torrelas-Hidalgo and L. Tournayan, Appl. Catal. 1 (1981) 81.

    Google Scholar 

  23. J. M. Parera, N. S. Figoli and E. M. Traffano, J. Catal. 79 (1983) 481.

    Google Scholar 

  24. S. C. Fung, C. A. Querini and C. J. McCoy, Stud. Surf. Sci. Catal. 68 (1991) 135.

    Google Scholar 

  25. M. A. Goula, A. A. Lemonidou and A. M. Efstathiou, J. Catal. 161 (1996) 626.

    Google Scholar 

  26. U. Olsbye, O. Moen, A. Slagtern and I. M. Dahl, Appl. Catal. A. 228 (2002) 289.

    Google Scholar 

  27. H. M. Swaan, V. C. H. Kroll, G. A. Martin and C. Mirodatos, Catal. Today 21 (1994) 571.

    Google Scholar 

  28. Z. Y. Hou, O. Yokota, T. Tanaka and T. Yashima, Catal. Lett.in press.

  29. R. Molina and G. Poncelet, J. Catal. 173 (1998) 257.

    Google Scholar 

  30. B. Scheffer, P. Molhoekand J. A. Moulijn, Appl. Catal. 46 (1989) 11.

    Google Scholar 

  31. C. W. Hu, J. Yao, H. Q. Yang, Y. Chen and A. M. Tian, J. Catal. 166 (1997) 1.

    Google Scholar 

  32. C. E. Quincoces, A. Diaz, M. Montes, E. N. Ponzi and M. G. Gonzalez, Stud. Surf. Sci. Catal. 139 (2001) 85.

    Google Scholar 

  33. Y.-G. Chen and J. Ren, Catal. Lett. 29 (1994) 39.

    Google Scholar 

  34. J. J. Gamman, G. J. Millar, G. Rose and J. Dreman, J. Chem. Soc., Faraday Trans. 94 (1998) 701.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuaki Yashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Z., Yokota, O., Tanaka, T. et al. Investigation of CH4 Reforming with CO2 on Meso-Porous Al2O3-Supported Ni Catalyst. Catalysis Letters 89, 121–127 (2003). https://doi.org/10.1023/A:1024787913883

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024787913883

Navigation