Skip to main content
Log in

CH4/CO2 reforming over highly active catalysts that is Ce-promoted Ni supported on KIT-1 with wormlike pore structure

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A new type of Ce-promoted Ni catalyst with KIT-1 as the support is prepared by using a sol-gel method. The catalyst exhibits excellent catalytic activity and superior stability in CO2 reforming of methane (CH4/CO2 reforming) reaction. Effects of CeO2 and KIT-1 with wormlike pore structure on catalytic activity are investigated by N2-physisorption, XRD, H2-TPR and TG techniques. The results indicate that the wormlike pore structure of KIT-1 is in favor of the high dispersion of metallic particles, and the doping of CeO2 promotes the dispersion of Ni particles on the surface of support, which inhibits the agglomeration and sintering of active particles in CH4/CO2 reforming reaction. Moreover, carbon deposition on the surface of the catalysts decreases obviously due to the introduction of CeO2. Experimental results during CH4/CO2 reforming show that the catalyst presented better catalytic performance than other Ni-based catalysts at 700°C and a gas hourly space velocity (GHSV) of 32 L gcat –1 h–1, which is attributed to better textural property of KIT-1, better dispersion of active species, and lower carbon deposition. Especially, 6% Ce-NiO/KIT-1 shows the best catalytic activity among the series of catalysts prepared in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stagg-Williams, S.M., Noronha, F.B., Fendley, G., et al., J. Catal., 2000, vol. 194, no. 2, pp. 240–249.

    Article  CAS  Google Scholar 

  2. Rostrup-Nielsen, J.R., Catal. Today, 1993, vol. 18, no. 4, pp. 305–324.

    Article  Google Scholar 

  3. Luna, A.E.C. and Iriarte, M.E., Appl. Catal. A: Gen., 2008, vol. 343, nos. 1, 2, pp. 10–15.

    Article  Google Scholar 

  4. Tang, S., Ji, L., Lin, J., et al., J. Catal., 2000, vol. 194, no. 2, pp. 424–430.

    Article  CAS  Google Scholar 

  5. Zhu, J.Q., Peng, X.X., Yao, L., et al., Int. J. Hydrogen Energy, 2013, vol. 38, no. 1, pp. 117–126.

    Article  CAS  Google Scholar 

  6. Masoud, K., Mehran, R., and Fereshteh, M., Chem. Eng. Technol., 2014, vol. 37, no. 6, pp. 957–963.

    Article  Google Scholar 

  7. Zeng, S.H., Fu, X.J., Wang, X.M., et al., Chem. Lett., 2014, vol. 144, no. 4, pp. 561–566.

    CAS  Google Scholar 

  8. Bouarab, R., Menad, S., Halliche, D., et al., Stud. Surf. Sci. Catal., 1998, vol. 119, pp. 717–722.

    Article  CAS  Google Scholar 

  9. Chen, Y.Z., Liaw, B.J., and Lai., W.H., Appl Catal A: Gen, 2002, vol. 230, no. 1–2, pp. 73–83.

    Article  CAS  Google Scholar 

  10. Damyanova, S., Pawelec, B., Arishtirova, K., et al., Int. J. Hydrogen Energy, 2012, vol. 37, no. 21, pp. 15966–15975.

    Article  CAS  Google Scholar 

  11. Wei, J.M., Xu, B.Q., Cheng, Z.X., et al., Stud Surf Sci Catal, 2000, vol. 130, pp. 3687–3692.

    Article  Google Scholar 

  12. Hou, ZY, Osamu Y, Takumi T, et al., Chem Lett, 2003, vol. 89, no. 1, pp. 121–127.

    CAS  Google Scholar 

  13. Wang, N., Chu, W., Zhang, T., et al., Int J Hydrogen Energy, 2012, vol. 37, no. 1, pp. 19–30.

    Article  Google Scholar 

  14. Issarly, R., Juan, A., Egle, P.M., et al., Catal Today, 2010, vol. 149, nos. 3, 4, pp. 388–393.

    Google Scholar 

  15. Liu, D.P., Quek, X.Y., Wah, H.H.A., et al., Catal. Today, 2009, vol. 148, nos. 3, 4, pp. 243–250.

    Article  CAS  Google Scholar 

  16. Ryoo, R., Kim, J.M., Ko, C.H., et al., J. Phys. Chem., 1996, vol. 100, pp. 17718–17721.

    Article  CAS  Google Scholar 

  17. Huo, Q.S., Margolese, D.I., and Stucky, G.D., Chem Mater, 1996, vol. 8, no. 5, pp. 1147–1160.

    Article  CAS  Google Scholar 

  18. Zeng, S.H., Zhang, X.H., Fu, X.J., et al., Appl Catal B: Environ, 2013, vols. 136, 137, pp. 308–316.

    Article  Google Scholar 

  19. Li, B.T., Xu, X.J., and Zhang, S.Y., Int. J. Hydrogen Energy, 2013, vol. 38, no. 2, pp. 890–900.

    Article  CAS  Google Scholar 

  20. Huang, T., Huang, W., Huang, J., et al., Fuel Process Technol, 2011, vol. 92, no. 10, pp. 1868–1875.

    Article  CAS  Google Scholar 

  21. Yogamalar, R., Srinivasan, R., Vinu, A., et al., Solid State Commun., 2009, vol. 149, nos. 43, 44, pp. 1919–1923.

    Article  CAS  Google Scholar 

  22. Zhang, Y., Gao, F., Wan, H., et al., Microporous Mesoporous Mater., 2008, vol. 113, no. 1, 3, pp. 393–401.

    Article  CAS  Google Scholar 

  23. Kelpinñski, L. and Wołcyrz, M., J. Solid State Chem., 1997, vol. 131, no. 1, pp. 121–130.

    Article  Google Scholar 

  24. Chojnacki, T., Krause, K., and Schmidt, L.D., J. Catal., 1991, vol. 128, no. 1, pp. 161–185.

    Article  CAS  Google Scholar 

  25. Krause, K.R., Schabes-Retchkiman, P., and Schmidt, L.D., J. Catal., 1992, vol. 134, no. 1, pp. 204–219.

    Article  CAS  Google Scholar 

  26. Zhang, L., Xu, C., and Champagne, P., Fuel, 2012, vol. 96, pp. 541–545.

    Article  CAS  Google Scholar 

  27. Sánchez, E.A., D’Angelo, M.A., and Comelli, R.A., Int. J. Hydrogen Energy, 2010, vol. 35, no. 11, pp. 5902–5907.

    Article  Google Scholar 

  28. Darujati, A.R.S. and Thomson, W.J., Chem. Eng. Sci., 2006, vol. 61, no. 13, pp. 4309–4315.

    Article  CAS  Google Scholar 

  29. Xu, L.L., Song, H.L., and Chou, L.J., Int J Hydrogen Energy, 2012, vol. 37, no. 23, pp. 18001–18020.

    Article  CAS  Google Scholar 

  30. Rivas, I., Alvarez, J., Pietri, E., et al., Int. J. Hydrogen Energy, 2013, vol. 38, no. 23, pp. 9718–9731.

    Article  Google Scholar 

  31. Wang, N., Yu, X.P., Wang, Y., et al., Catalysis Today, 2013, vol. 212, pp. 98–107.

    Article  CAS  Google Scholar 

  32. Serrano-Lotina, A., Martin, A.J., Folgado, M.A., et al., Int. J. Hydrogen Energy, 2012, vol. 37, no. 17, pp. 12342–12350.

    Article  CAS  Google Scholar 

  33. Amin, M.H., Mantri, K., Newnham, J., et al., Appl. Catal., B: Environ., 2012, vols. 119, 120, pp. 217–226.

    Article  Google Scholar 

  34. Guo, Y.H., Xia, C., and Liu, B.S., Chem. Eng. J., 2014, vol. 237, pp. 421–429.

    Article  CAS  Google Scholar 

  35. Xia, C., Liu, B.S., and Guo, Y.H., Ind. Eng. Chem. Res., 2014, vol. 53, no. 6, pp. 2189–2196.

    Article  CAS  Google Scholar 

  36. Liu, D.P., Quek, X.Y., Cheo, W.N.E., et al., J. Catal., 2009, vol. 266, no. 2, pp. 380–390.

    Article  CAS  Google Scholar 

  37. Sun, L.Z., Tan, Y.H., Zhang, Q.D., et al., Int. J. Hydrogen Energy, 2013, vol. 38, no. 4, pp. 1892–1900.

    Article  CAS  Google Scholar 

  38. Esch, F., Fabris, S., Zhou, L., et al., Science, 2005, vol. 309, no. 5735, pp. 752–755.

    Article  CAS  Google Scholar 

  39. Takenaka, S. and Otsuka, K., Chem. Lett., 2001, vol. 30, no. 3, pp. 218–219.

    Article  Google Scholar 

  40. Chen, W., Zhao, G.F., Xue, Q.S., et al., Appl. Catal. B: Environ., 2013, vols. 136, 137, pp. 260–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Quan.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Z.L., Li, J.F. CH4/CO2 reforming over highly active catalysts that is Ce-promoted Ni supported on KIT-1 with wormlike pore structure. Russ J Appl Chem 90, 801–810 (2017). https://doi.org/10.1134/S1070427217050226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217050226

Navigation