Skip to main content
Log in

Calculation of Two-Center Nuclear Attraction Integrals over Integer and Noninteger n-Slater Type Orbitals in Nonlined-Up Coordinate Systems

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Two-center nuclear attraction integrals over Slater type orbitals with integer and noninteger principal quantum numbers in nonlined up coordinate systems have been calculated by means of formulas in our previous work (T. Özdoğan and M. Orbay, Int. J. Quant. Chem. 87 (2002) 15). The computer results for integer case are in best agreement with the prior literature. On the other hand, the results for noninteger case are not compared with the literature due to the scarcity of the literature, but also compared with the limit of integer case and good agreements are obtained. The proposed algorithm for the calculation of two-center nuclear attraction integrals over Slater type orbitals with noninteger principal quantum numbers in nonlined-up coordinate systems permits to avoid the interpolation procedure used to overcome the difficulty introduced by the presence of noninteger principal quantum numbers. Finally, numerical aspects of the presented formulae are analyzed under wide range of quantum numbers, orbital exponents and internuclear distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zener, Phys. Rev. 36 (1930) 51; J.C. Slater, Phys. Rev. 36 1930 pp57.

    Google Scholar 

  2. S.F. Boys, Proc. R. Soc. A 200 (1950) 542.

    Google Scholar 

  3. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  4. I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1995).

    Google Scholar 

  5. R.G. Parr and H.W. Joy, J.Chem. Phys. 26 (1957) 424.

    Google Scholar 

  6. H.W. Joy and R.G. Parr, J. Chem. Phys. 28 (1958) 448.

    Google Scholar 

  7. A.F. Saturano and R.G. Parr, J. Chem. Phys. 29 (1958) 490.

    Google Scholar 

  8. L.G. Snyder, J. Chem. Phys. 33 (1960) 1711.

    Google Scholar 

  9. A.F. Saturano and R.G. Parr, J. Chem. Phys. 33 (1960) 22.

    Google Scholar 

  10. M. Geller, J. Chem. Phys. 36 (1962) 2424.

    Google Scholar 

  11. M. Geller, J. Chem. Phys. 39 (1963) 84.

    Google Scholar 

  12. H.J. Silverstone, J. Chem. Phys. 45 (1966) 4337.

    Google Scholar 

  13. D.M. Bishop, Adv. Quant. Chem. 3 (1967) 25.

    Google Scholar 

  14. A. Allouche, Theor. Chim. Acta. 42 (1976) 325.

    Google Scholar 

  15. W.J. Taylor, J. Math. Phys. 19 (1978) 52.

    Google Scholar 

  16. A. Baba-Ahmed, J. Gayoso, B. Maouche and O. Oumerali, QCPE Bull. 4 program, QCPE 474 (1984).

  17. S.M. Mekkelece and A. Baba-Ahmed, QCPE Bull. 11 program, QCMP 099 (1991).

  18. S.M. Mekelleche and A. Baba-Ahmed, Int. J. Quant. Chem. 63 (1997) 843.

    Google Scholar 

  19. S.M. Mekelleche and A. Baba-Ahmed, Theor. Chem. Acc. 103 (2000) 463.

    Google Scholar 

  20. T. Koga and K. Kanayama, Chem. Phys. Lett. 26 (1997) 123.

    Google Scholar 

  21. T. Koga and K. Kanayama, J. Phys. B 30 (1997) 1623.

    Google Scholar 

  22. T. Koga, K. Kanayama and A.J. Truhlar, Int. J. Quant. Chem. 62 (1997) 1.

    Google Scholar 

  23. I.I. Guseinov, Phys. Rev. A 31 (1985) 2851.

    Google Scholar 

  24. I.I. Guseinov and B.A. Mamedov, J. Mol. Struct. (Theochem) 465 (1999) 1.

    Google Scholar 

  25. T. Özdoğan and M. Orbay, Int. J. Quant. Chem. 87 (2002) 15.

    Google Scholar 

  26. T. Özdoğan, M. Orbay and S. Gümüş, Commun. Theor. Phys. 37 (2002) 711.

    Google Scholar 

  27. R.S. Mulliken, C.A. Rieke, D. Orloff and H. Orloff, J. Chem. Phys. 17 (1949) 1248.

    Google Scholar 

  28. I.I. Guseinov, B.A. Mamedov, M. Kara and M. Orbay, Pramana-J. Phys. 56 (2001) 691.

    Google Scholar 

  29. R. Carbo and E. Besalu, Adv. Quant. Chem. 24 (1992) 115.

    Google Scholar 

  30. J.F. Rico, R. Lopez and G. Ramirez, J. Comput. Chem. 9 (1988) 790.

    Google Scholar 

  31. M.E. Beck and G. Hohlneicher, Theor. Chem. Acc. 101 (1999) 297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özdoğan, T., Gümüş, S. & Kara, M. Calculation of Two-Center Nuclear Attraction Integrals over Integer and Noninteger n-Slater Type Orbitals in Nonlined-Up Coordinate Systems. Journal of Mathematical Chemistry 33, 181–188 (2003). https://doi.org/10.1023/A:1024786506959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024786506959

Navigation