Skip to main content
Log in

Use of organophosphorus extractants impregnated on silica gel for the extraction chromatographic separation of minor actinides from high level waste solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Silica-gel has been used as an inert support for the extraction chromatographic separation of actinides and lanthanides from HNO3 and synthetic high level waste (HLW) solutions. Silica-gel was impregnated with tri-butyl phosphate (TBP), to yield STBP; 2-ethylhexyl phosphonic acid, mono 2-ethylhexyl ester (KSM-17, equivalent to PC-88A), SKSM; octyl(phenyl)-N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO), SCMPO; and trialkylphosphine oxide (Cyanex-923), SCYN and sorption of Pu(IV), Am(III) and Eu(III) from HNO3 solutions was studied batchwise. Several parameters, like time of equilibration, HNO3 and Pu(IV) concentrations were varied. The uptake of Pu(IV) from 3.0M HNO3 followed the order SCMPO>SCYN>SKSM>STBP. With increasing HNO3 concentration, D Pu increased up to 3.0M of HNO3 for STBP, SKSM and SCMPO and then decreased. In the case of Am and Eu with SCMPO, the D values initially increased between 0.5 to 1.0M of HNO3, remained constant up to 5.0M and then slightly decreased at 7.5M. Also, the effects of NaNO3, Nd(III) and U(VI) concentrations on the uptake of Am(III) from HNO3 solutions were evaluated. With increasing NaNO3 concentration up to 3.0M, D Am remained almost constant while it was observed that it decreases drastically by adding Nd(III) or U(VI). The uptake of Pu and Am from synthetic pressurized heavy water reactor high level waste (PHWR-HLW) in presence of high concentrations of uranium and after depleting the uranium content, and finally extraction chromatographic column separation of Pu and Am from U-depleted synthetic PHWR-HLW have been carried out. Using SCMPO, high sorption of Pu, Am and U was obtained from the U-depleted HLW solution. These metal ions were subsequently eluted using various reagents. The sorption results of the metal ions on silica-gel impregnated with several phosphorus based extractants have been compared. The uptake of Am, Pu and rare earths by SCMPO has been compared with those where CMPO was sorbed on Chromosorb-102, Amberchrom CG-71 and styrene divinylbenzene copolymer immobilized in porous silica particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Schulz, E. P. Horwitz, Separ. Sci. Technol., 23 (1988) 1191.

    Google Scholar 

  2. M. Ozawa, S. Nemoto, A. Togashi, T. Kawata, K. Onishi, Solvent Extr. Ion Exch., 10 (1992) 829.

    Google Scholar 

  3. J. N. Mathur, M. S. Murali, P. R. Natarajan, L. P. Badheka, A. Bannerji, A. Ramanujam, P. S. Dhami, V. Gopalkrishnan, R. K. Dhumwad, M. K. Rao, Waste Managem., 13 (1993) 317.

    Google Scholar 

  4. Y. Zhu, R. Jiao, Nucl. Technol., 108 (1994) 361.

    Google Scholar 

  5. M. S. Murali, J. N. Mathur, Solvent Extr. Ion Exch., 19 (2001) 61.

    Google Scholar 

  6. Y. Morita, I. Yamaguchi, Y. Kondo, K. Shirahashi, I. Yamagishi, T. Fujiwara, M. Kubota, Safety and Environmental Aspects of Partitioning and Transmutation of Actinides and Fission Products, IAEA-TECDOC-783, IAEA Vienna, 1996, p. 93.

    Google Scholar 

  7. G. Baudin, J. Lefevre, C. Prunier, M. Salvatores, Safety and Environmental Aspects of Partitioning and Transmutation of Actinides and Fission Products, IAEA-TECDOC-783, IAEA Vienna, 1996, p. 37.

    Google Scholar 

  8. P. R. Danesi, E. P. Horwitz, P. G. Rickert, J. Phys. Chem., 87 (1983) 4708.

    Google Scholar 

  9. P. R. Danesi, R. Chiarizia, P. Rickert, E. P. Horwitz, Solvent Extr. Ion Exch., 3 (1985) 111.

    Google Scholar 

  10. R. Chiarizia, P. R. Danesi, Separ. Sci. Technol., 22 (1987) 641.

    Google Scholar 

  11. A. Ramanujam, P. S. Dhami, V. Gopalkrishnan, N. L. Dudwadkar, R. R. Chitnis, J. N. Mathur, Separ. Sci. Technol., 34 (1999) 1717.

    Google Scholar 

  12. A. K. Pandey, M. M. Gautam, J. P. Shukla, R. H. Iyer, J. Member Sci., 190 (2001) 9.

    Google Scholar 

  13. L. Nunez, B. A. Buchholz, G. F. Vandegrift, Separ. Sci. Technol., 30 (1995) 1455.

    Google Scholar 

  14. M. D. Kamaniski, L. Nunez, Separ. Sci. Technol., 35 (2000) 2003.

    Google Scholar 

  15. M. D. Kamaniski, L. Nunez, J. Magnetism Magnetic Mater., 194 (1999) 31.

    Google Scholar 

  16. G. J. Lumetta, D. W. Wester, J. R. Morrey, M. J. Wagner, Solvent Extr. Ion Exch., 11 (1993) 663.

    Google Scholar 

  17. A. Ramanujam, P. S. Dhami, V. Gopalkrishnan, M. K. Rao, J. N. Mathur, M. S. Murali, R. H. Iyer, Nucl. Technol., 109 (1995) 216.

    Google Scholar 

  18. V. Gopalkrishnan, P. S. Dhami, A. Ramanujam, M. V. Balaramakrishna, M. S. Murali, J. N. Mathur, R. H. Iyer, A. K. Bauri, A. Banerji, J. Radioanal. Nucl. Chem., 191 (1995) 279.

    Google Scholar 

  19. Y. Wei, M. Kurmagai, Y. Takashima, G. Modolo, R. Odoj, Nucl. Technol., 132 (2000) 413.

    Google Scholar 

  20. E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, A. M. Essling, D. Graczyk, Anal. Chim. Acta, 266 (1992) 25.

    Google Scholar 

  21. E. P. Horwitz, R. Chiarizia, M. L. Dietz, H. Diamond, Anal. Chim. Acta, 281 (1993) 361.

    Google Scholar 

  22. R. E. Lois, G. Duyckaerts, J. Radioanal. Nucl. Chem., 90 (1985) 105.

    Google Scholar 

  23. T. Kimura, J. Radioanal. Nucl. Chem., 141 (1990) 295.

    Google Scholar 

  24. T. Kimura, J. Radioanal. Nucl. Chem., 141 (1990) 307.

    Google Scholar 

  25. J. Akatsu, T. Kimura, J. Radioanal. Nucl. Chem., 140 (1990) 195.

    Google Scholar 

  26. T. Kimura, J. Akatsu, J. Radioanal. Nucl. Chem., 149 (1991) 13.

    Google Scholar 

  27. J. N. Mathur, M. S. Murali, P. R. Natarajan, J. Radioanal. Nucl. Chem., 162 (1992) 171.

    Google Scholar 

  28. J. N. Mathur, M. S. Murali, M. S. Nagar, P. R. Natarajan, L. P. Badheka, A. Banerji, J. Radioanal. Nucl. Chem., 175 (1992) 415.

    Google Scholar 

  29. M. Yamaura, H. T. Matsuda, J. Radioanal. Nucl. Chem., 241 (1999) 277.

    Google Scholar 

  30. M. E. Barr, L. D. Schultz, G. D. Jarvinen, J. Espinoza, T. E. Ricketts, Y. Valdez, K. D. Abney, R. A. Bartsch, J. Radioanal. Nucl. Chem., 248 (2001) 457.

    Google Scholar 

  31. A. Morgenstern, C. Apostolidis, R. Carlos-Marquez, K. Mayer, R. Molinet, Radiochim. Acta, 90 (2002) 81.

    Google Scholar 

  32. L. Pietrelli, A. Salluzzo, F. Troiani, J. Radioanal. Nucl. Chem., 141 (1990) 107.

    Google Scholar 

  33. J. N. Mathur, M. S. Murali, P. R. Natarajan, L. P. Badheka, A. Banerji, Talanta, 39 (1992) 493.

    Google Scholar 

  34. R. C. Gatrone, L. Kaplan, E. P. Horwitz, Solvent Extr. Ion Exch., 5 (1987) 1075.

    Google Scholar 

  35. M. S. Murali, J. N. Mathur, Solvent Extr. Ion Exch., 19 (2001) 61.

    Google Scholar 

  36. S. K. Das, S. G. Rege, A. Mukherji, A. Ramanujam, R. K. Dhumwad, Report, BARC-1539, 1991.

  37. G. Suresh, M. S. Murali, J. N. Mathur, Radiochim. Acta, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, P.W., Dhami, P.S., Misra, S.K. et al. Use of organophosphorus extractants impregnated on silica gel for the extraction chromatographic separation of minor actinides from high level waste solutions. Journal of Radioanalytical and Nuclear Chemistry 257, 327–332 (2003). https://doi.org/10.1023/A:1024783813193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024783813193

Keywords

Navigation