Skip to main content
Log in

Diabetic Heart Dysfunction: Is Cell Transplantation a Potential Therapy?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The presence of long-standing diabetes mellitus leads to the development of a number of typical end organ complications. These complications include coronary heart disease, stroke, peripheral arterial disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy and diabetic cardiomyopathy. From an epidemiological and clinical standpoint, cardiovascular disease remains the most important complication of diabetes. Cardiovascular complications are the most common causes of morbidity and mortality in diabetics, accounting for up to 85% of the mortality in diabetic patients [1]. The increasing prevalence of obesity and sedentary lifestyle in Western society are leading to an increase in the prevalence in diabetes. As such diabetes is an increasing cause of cardiovascular disease [2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu K, et al. Diabetes and decline in heart disease mortality in US adults. JAMA 1999;281:1291-1297.

    PubMed  Google Scholar 

  2. Grundy SM, et al. Diabetes and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation 1999;100:1134-1146.

    PubMed  Google Scholar 

  3. Kannel WB, et al. Diabetes and cardiovascular disease: The Framingham study. JAMA 1979;241:2035-2038.

    PubMed  Google Scholar 

  4. Stamler J, et al. Diabetes, other risk factors and 12-yr cardiovascular mortality for men screen in the multiple risk factor intervention trial. Diabetes Care 1993;16:434-444.

    PubMed  Google Scholar 

  5. Kuusisto J, et al. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994;43:960-967.

    PubMed  Google Scholar 

  6. Malmberg K, et al. Glycometabolic state at admission: An important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: Long term results from the DIGAMI study. Circulation 1999;99:2626-2632.

    PubMed  Google Scholar 

  7. Kannel WB, et al. Role of diabetes in congestive heart failure: The Framingham study. Am J Cardiol 1974;34: 29-34.

    PubMed  Google Scholar 

  8. Wilson PW, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837-1847.

    PubMed  Google Scholar 

  9. Fuller JH, et al. Mortality from coronary heart disease and stroke in relation to degree of glycemia: The Whitehall study. Br Med J 1983;287:867-870.

    Google Scholar 

  10. Orlander PR, et al. The relation of diabetes to the severity of acute myocardial infarction and post-myocardial infarction survival in Mexican-Americans and non-Hispanic whites. The Corpus Christi Heart Project. Diabetes 1994;43:897-902.

    PubMed  Google Scholar 

  11. Ettinger PS, et al. Cardiac disease in diabetes. Postgrad Med 1989;85:229-232.

    Google Scholar 

  12. MERIT-HF study group. Effect of metoprolol CR/XL in chronic heart failure. Lancet 1999;353:2001-2007.

    Google Scholar 

  13. Ryden L, et al. for the ATLAS investigators. High dose ACE inhibitor strategy is more effective than low dose in diabetic patients with congestive heart failure. J Am Coll Cardiol 1993;33(Suppl A):188825-3(ab).

    Google Scholar 

  14. Rubler S, et al. New type of cardiomyopathy associated with diabetic glomeruloscerlosis. Am J Cardiol 1972;30:595-602.

    PubMed  Google Scholar 

  15. Regan TJ, et al. Evidence of cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977;60:884-899.

    PubMed  Google Scholar 

  16. Regan TJ. Congestive heart failure in the diabetic. Ann Rev Med 1983;34:161-168.

    PubMed  Google Scholar 

  17. van Hoeven KH, et al. A comparison of the pathological spectrum of hypertensive, diabetic and hypertensivediabetic heart disease. Circulation 1990;82:848-855.

    PubMed  Google Scholar 

  18. Gotzsche O, et al. Incipient cardiomyopathy in young insulin-dependent diabetic patients: A seven-year prospective Doppler echocardiographic study. Diabetic Med 1996;13:834-840.

    PubMed  Google Scholar 

  19. Spector KS. Diabetic cardiomyopathy. Clin Cardiol 1998;21:885-887.

    PubMed  Google Scholar 

  20. Mahgoub MA, et al. Diabetes mellitus and cardiac function. Mol Cell Biochem 1998;180:59-64.

    PubMed  Google Scholar 

  21. Hamby RI, et al. Diabetic cardiomyopathy. JAMA 1974;229:1749-1754.

    PubMed  Google Scholar 

  22. Nasher PJ, et al. Maximal coronary flow reserve and metabolic coronary vasodilatation in patients with diabetes mellitus. Circulation 1995;91:635-640.

    PubMed  Google Scholar 

  23. Devereux RB, et al. The impact of diabetes on cardiac structure and function. The Strong Heart Study. Circulation 2000;101:2271-2276.

    PubMed  Google Scholar 

  24. Galderisi M, et al. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 1991;68:85-89.

    PubMed  Google Scholar 

  25. Kahn JC, et al. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J Amer Coll Cardiol 1986;7:1303-1309.

    Google Scholar 

  26. Paillole, et al. Prevalence and significance of left ventricular filling abnormalities determined by Doppler echocardiography in young type I (insulin-dependent) diabetic patients. Am J Cardiol 1989;64:1010-1016.

    PubMed  Google Scholar 

  27. Fraser GE, et al. Comparison of echocardiographic variables between type I diabetics and normal controls. Am J Cardiol 1995;75:141-145.

    PubMed  Google Scholar 

  28. Vered A, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy).AmJ Cardiol 1984;54:633-637.

    Google Scholar 

  29. Zola B, et al. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metabol 1986;63:208-214.

    Google Scholar 

  30. Dillman WH. Diabetes mellitus induces changes in myosin of the rat. Diabetes 1980;29:579-582.

    PubMed  Google Scholar 

  31. Di Bello V, et al. Increased echodensity of myocardial wall in the diabetic heart: An ultrasound tissue characterization study. J Am Coll Cardiol 1995;25:1408-1415.

    PubMed  Google Scholar 

  32. Baynes JW, et al. Role of oxidative stress in diabetic complications: A new perspective on an old paridigm. Diabetes 1999;48:1-9.

    PubMed  Google Scholar 

  33. Rodrigues B, et al. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 1998;180:53-57.

    PubMed  Google Scholar 

  34. Temsah RM, et al. Modulation of cardiac sarcoplasmic reticulum gene expression by lack of oxygen and glucose. FASEB J 2001;15:2515-2517.

    PubMed  Google Scholar 

  35. Netticadan T, et al. Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 2001;50:2133-2138.

    PubMed  Google Scholar 

  36. Lopaschuk G. Metabolic abnormalities in the diabetic heart. Heart Failure Reviews 2002;7:149-159.

    PubMed  Google Scholar 

  37. Pipeleers D, et al. A view on beta cell transplantation in diabetes. Ann NY Acad Sci 2002; 958:69-78.

    PubMed  Google Scholar 

  38. Warnock GL, et al. Long-term follow-up after transplantation of insulin-producing pancreatic islets into patients with type 1 (insulin-dependent)diabetes mellitus. Diabetologia 1992;35:89-95.

    PubMed  Google Scholar 

  39. Riccordi C, et al. Human islet isolation and allotransplantation in 22 consecutive cases. Transplantation 1992;53:407-414.

    PubMed  Google Scholar 

  40. Hering BJ, et al. Clinical islet transplantation-registry report accomplishments in the past and future needs. Cell Transplant 1993;2:269-282.

    PubMed  Google Scholar 

  41. Shapiro AM, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Eng JMed 2000;343:230- 238.

    Google Scholar 

  42. Assady S, et al. Insulin production by Human Embryonic Stem Cells. Diabetes 2001;50:1691-1697.

    PubMed  Google Scholar 

  43. Soonpaa MH, et al. Formation of nascent intercalated discs between grafted fetal cardiomyocytes and host myocardium. Science 1994;264:98-101.

    PubMed  Google Scholar 

  44. Leor J, et al. Gene transfer and cell transplant: An experimental approach to repair a broken heart. Cardiovasc Res 1997;35:431-444.

    PubMed  Google Scholar 

  45. Li R-K, et al. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol 1999;31:513-522.

    PubMed  Google Scholar 

  46. Li R-K, et al. In vivo survival and function of transplant rat cardiomyocytes. Circ Res 1996;78:282-288.

    Google Scholar 

  47. Li R-K, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 1996;62:654-661.

    PubMed  Google Scholar 

  48. Li R-K, et al. Natural history of fetal rat cardiomyocytes transplanted into adult myocardial scar tissue. Circulation 1997;96(Suppl II):179-187.

    Google Scholar 

  49. Li R-K, et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. J Thorac Cardiovasc Surg 2000;119:62-68.

    PubMed  Google Scholar 

  50. Tomita S, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(Suppl II):II247-II256.

    PubMed  Google Scholar 

  51. Yoo KJ, et al. Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg 2000;70:859-865.

    PubMed  Google Scholar 

  52. Yoo KJ, et al. Heart cell transplantation improves heart function in dilated cardiomyopathic hamsters. Circulation 2000;102(Suppl III):III204-III209.

    PubMed  Google Scholar 

  53. Yau TM, et al. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001;104(Suppl 1):I218-I222.

    PubMed  Google Scholar 

  54. Leor J, et al. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat: A potential method for repair of infarcted myocardium. Circulation 1996;94(Suppl):II332-II336.

    PubMed  Google Scholar 

  55. Watanabe E, et al. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant 1998;7:239-246.

    PubMed  Google Scholar 

  56. Van Meter CH, et al. Myoblast transplantation in the porcine model: A potential technique for myocardial repair. J Thorac Cardiovasc Surg 1995;110:1442-1448.

    PubMed  Google Scholar 

  57. Chiu RC, et al. Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995;60:12-18.

    PubMed  Google Scholar 

  58. Zibaitis A, et al. Myocardial regeneration with satellite cell implantation. Transplantation Proceedings 1994;26:3294.

    PubMed  Google Scholar 

  59. Murry CE, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98:2512- 2523.

    PubMed  Google Scholar 

  60. Atkins BZ, et al. Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg 1999;67:124-129.

    PubMed  Google Scholar 

  61. Menasche P, et al. Myoblast transplantation for heart failure. Lancet 2001;357:279-280.

    PubMed  Google Scholar 

  62. Itescu S, et al. Myocardial neovascularization by adult bone marrow-derived angioblasts: Strategies for improvement of cardiomyocyte function. Ann Hematol 2002;81(Suppl 2):S21-S25.

    PubMed  Google Scholar 

  63. Tomita S, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123(6):1132-1140.

    PubMed  Google Scholar 

  64. Strauer BE, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913-1918.

    PubMed  Google Scholar 

  65. Menasche P. Cell therapy of heart failure. Comptes Rendus Biologies 2002:325:731-738.

    PubMed  Google Scholar 

  66. Sakakibara Y, et al. Cardiomyocyte transplantation does not reverse cardiac remodeling in rats with chronic myocardial infarction. Ann Thorac Surg 2002;74:25-30.

    PubMed  Google Scholar 

  67. Li Y, et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 2001;104:1147-1152.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Ke Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, J., Verma, S. & Li, RK. Diabetic Heart Dysfunction: Is Cell Transplantation a Potential Therapy?. Heart Fail Rev 8, 213–219 (2003). https://doi.org/10.1023/A:1024701113383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024701113383

Navigation