Skip to main content
Log in

Diabetes medication following heart transplantation: a focus on novel cardioprotective therapies—a joint review from endocrinologists and cardiologists

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

There is accumulating evidence that novel glucose-lowering agents infer potent cardiovascular and renal benefits. Therefore, it is imperative to reassess the management of post-transplant diabetes mellitus and consider the role of newer agents. With improved transplant-related survival and high prevalence of post-transplant diabetes, management of long-term complications such as diabetes are increasingly important. There are limited guidelines to assist in choice of appropriate agents after solid organ transplantation. Traditional therapies including insulin and sulfonylureas may still have a role; however, other agents should be considered prior. The evidence of novel glucose-lowering agents in post-transplant care is limited, and most studies have focused on kidney transplant recipients. While there are some parallels between renal and cardiac transplant recipients, the potential cardiovascular benefits, particularly on cardiac fibrosis are unique to cardiac transplantation. The treatment of diabetes, with a focus on additional cardiac and renal benefits, needs to be brought to the forefront of post-transplant care with incorporation of recent evidence outside of transplantation. The role for novel glucose-lowering agents in cardiac transplant recipients will be explored, with a summary of available evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khush KK, Hsich E, Potena L et al (2021) The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-eighth adult heart transplantation report 2021; Focus on recipient characteristics. J Heart Lung Transplant 40(10):1035–1049

    Article  PubMed  Google Scholar 

  2. Lund LH, Edwards LB, Kucheryavaya AY et al (2015) The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report-2015; Focus theme: early graft failure. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 34(10):1244–1254

    Article  Google Scholar 

  3. Khush KK, Potena L, Cherikh WS et al (2020) The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th adult heart transplantation report-2020; Focus on deceased donor characteristics. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 39(10):1003–1015

    Article  Google Scholar 

  4. Zhang M, Han Y, Yuan Y et al (2019) Risk factors for new-onset diabetes mellitus after heart transplantation in Chinese patients: a single center experience. Ann Nutr Metab 74(4):331–338

    Article  CAS  PubMed  Google Scholar 

  5. Munshi VN, Saghafian S, Cook CB, Eric Steidley D, Hardaway B, Chakkera HA (2020) Incidence, risk factors, and trends for postheart transplantation diabetes mellitus. Am J Cardiol 125(3):436–440

    Article  CAS  PubMed  Google Scholar 

  6. Munshi VN, Saghafian S, Cook CB, Aradhyula SV, Chakkera HA (2021) Use of imputation and decision modeling to improve diagnosis and management of patients at risk for new-onset diabetes after transplantation. Ann Transplant 16(26):e928624

    Google Scholar 

  7. American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(1):S81–S90

    Article  Google Scholar 

  8. Sharif A, Hecking M, de Vries APJ et al (2014) Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 14(9):1992–2000

    Article  CAS  Google Scholar 

  9. Chowdhury TA, Wahba M, Mallik R et al (2021) Association of British Clinical Diabetologists and Renal Association guidelines on the detection and management of diabetes post solid organ transplantation. Diabet Med 38(6):e14523

    Article  PubMed  Google Scholar 

  10. Eide IA, Halden TAS, Hartmann A et al (2015) Limitations of hemoglobin A1c for the diagnosis of posttransplant diabetes mellitus. Transplantation 99(3):629–635

    Article  CAS  PubMed  Google Scholar 

  11. Pimentel AL, Cavagnolli G, Camargo JL (2017) Diagnostic accuracy of glycated hemoglobin for post-transplantation diabetes mellitus after kidney transplantation: systematic review and meta-analysis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 32(3):565–572

    CAS  Google Scholar 

  12. Yates CJ, Fourlanos S, Colman PG, Cohney SJ (2013) Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. Transplantation 96(8):726–731

    Article  CAS  PubMed  Google Scholar 

  13. Valderhaug TG, Jenssen T, Hartmann A et al (2009) Fasting plasma glucose and glycosylated hemoglobin in the screening for diabetes mellitus after renal transplantation. Transplantation 88(3):429–434

    Article  PubMed  Google Scholar 

  14. Kim HJ, Jung SH, Kim JJ et al (2017) New-onset diabetes mellitus after heart transplantation—incidence, risk factors and impact on clinical outcome. Circ J Off J Jpn Circ Soc 81(6):806–814

    CAS  Google Scholar 

  15. Vest AR, Cherikh WS, Noreen SM, Stehlik J, Khush KK (2022) New-onset diabetes mellitus after adult heart transplantation and the risk of renal dysfunction or mortality. Transplantation 106(1):178–187

    Article  CAS  PubMed  Google Scholar 

  16. Foroutan F, Alba AC, Guyatt G et al (2018) Predictors of 1-year mortality in heart transplant recipients: a systematic review and meta-analysis. Heart 104(2):151–160

    Article  CAS  PubMed  Google Scholar 

  17. Hackman KL, Snell GI, Bach LA (2017) Poor glycemic control is associated with decreased survival in lung transplant recipients. Transplantation 101(9):2200–2206

    Article  CAS  PubMed  Google Scholar 

  18. Burroughs TE, Swindle J, Takemoto S et al (2007) Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. Transplantation 83(8):1027–1034

    Article  PubMed  Google Scholar 

  19. Tsai HI, Liu FC, Lee CW et al (2017) Cardiovascular disease risk in patients receiving organ transplantation: a national cohort study. Transpl Int Off J Eur Soc Organ Transplant 30(11):1161–1171

    Google Scholar 

  20. Hjelmesaeth J, Hartmann A, Leivestad T et al (2006) The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int 69(3):588–595

    Article  CAS  PubMed  Google Scholar 

  21. Russo MJ, Chen JM, Hong KN et al (2006) Survival after heart transplantation is not diminished among recipients with uncomplicated diabetes mellitus: an analysis of the United Network of Organ Sharing database. Circulation 114(21):2280–2287

    Article  PubMed  Google Scholar 

  22. Trivedi JR, Cheng A, Ising M, Lenneman A, Birks E, Slaughter MS (2016) Heart transplant survival based on recipient and donor risk scoring: a UNOS database analysis. ASAIO J Am Soc Artif Intern Organs 1992 62(3):297–301

    Article  Google Scholar 

  23. Hsich EM, Blackstone EH, Thuita LW et al (2020) Heart transplantation: an in-depth survival analysis. JACC Heart Fail 8(7):557–568

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ekstrand AV, Eriksson JG, Grönhagen-Riska C, Ahonen PJ, Groop LC (1992) Insulin resistance and insulin deficiency in the pathogenesis of posttransplantation diabetes in man. Transplantation 53(3):563–569

    Article  CAS  PubMed  Google Scholar 

  25. Hjelmesaeth J, Hagen M, Hartmann A, Midtvedt K, Egeland T, Jenssen T (2002) The impact of impaired insulin release and insulin resistance on glucose intolerance after renal transplantation. Clin Transplant 16(6):389–396

    Article  PubMed  Google Scholar 

  26. Jørgensen MB, Hornum M, van Hall G et al (2017) The impact of kidney transplantation on insulin sensitivity. Transpl Int Off J Eur Soc Organ Transplant 30(3):295–304

    Google Scholar 

  27. Zielińska K, Kukulski L, Wróbel M, Przybyłowski P, Zakliczyński M, Strojek K (2020) Prevalence and risk factors of new-onset diabetes after transplantation (NODAT). Ann Transplant 25(25):e926556

    PubMed  Google Scholar 

  28. Newman JD, Schlendorf KH, Cox ZL, Zalawadiya SK, Powers AC, Niswender KD, Shah RV, Lindenfeld J (2022) Post-transplant diabetes mellitus following heart transplantation. J Heart Lung Transplant 41(11):1537–1546

    Article  PubMed  Google Scholar 

  29. Midtvedt K (2004) Insulin resistance after renal transplantation: the effect of steroid dose reduction and withdrawal. J Am Soc Nephrol 15(12):3233–3239

    Article  PubMed  Google Scholar 

  30. Haller MC, Royuela A, Nagler EV, Pascual J, Webster AC (2016) Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst Rev 2016(8):005632

    Google Scholar 

  31. Kotha S, Lawendy B, Asim S et al (2021) Impact of immunosuppression on incidence of post-transplant diabetes mellitus in solid organ transplant recipients: systematic review and meta-analysis. World J Transplant 11(10):432–442

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cehic MG, Nundall N, Greenfield JR, Macdonald PS (2018) Management strategies for posttransplant diabetes mellitus after heart transplantation: a review. J Transplant 2018:1025893

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hermayer KL, Egidi MF, Finch NJ et al (2012) A randomized controlled trial to evaluate the effect of glycemic control on renal transplantation outcomes. J Clin Endocrinol Metab 97(12):4399–4406

    Article  CAS  PubMed  Google Scholar 

  34. Hecking M, Haidinger M, Döller D et al (2012) Early basal insulin therapy decreases new-onset diabetes after renal transplantation. J Am Soc Nephrol JASN 23(4):739–749

    Article  CAS  PubMed  Google Scholar 

  35. Schwaiger E, Krenn S, Kurnikowski A et al (2021) Early postoperative basal insulin therapy versus standard of care for the prevention of diabetes mellitus after kidney transplantation: a multicenter randomized trial. J Am Soc Nephrol JASN 32(8):2083–2098

    Article  CAS  PubMed  Google Scholar 

  36. Sharif A, Moore R, Baboolal K (2008) Influence of lifestyle modification in renal transplant recipients with postprandial hyperglycemia. Transplantation 85(3):353–358

    Article  PubMed  Google Scholar 

  37. UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). The Lancet 352(9131):854–865

    Article  Google Scholar 

  38. Ram E, Lavee J, Tenenbaum A et al (2019) Metformin therapy in patients with diabetes mellitus is associated with a reduced risk of vasculopathy and cardiovascular mortality after heart transplantation. Cardiovasc Diabetol 16(18):118

    Article  Google Scholar 

  39. Peled Y, Lavee J, Raichlin E et al (2017) Metformin therapy reduces the risk of malignancy after heart transplantation. J Heart Lung Transplant 36(12):1350–1357

    Article  PubMed  Google Scholar 

  40. Bartlett F, January S, Pottebaum A, Horwedel T, Malone AF (2020) Impact of metformin on malignancy in solid organ transplantation. Clin Transplant 34(6):e13851

    Article  CAS  PubMed  Google Scholar 

  41. Vanhove T, Remijsen Q, Kuypers D, Gillard P (2017) Drug–drug interactions between immunosuppressants and antidiabetic drugs in the treatment of post-transplant diabetes mellitus. Transplant Rev Orlando Fla 31(2):69–77

    Article  Google Scholar 

  42. Amiel SA, Aschner P, Childs B et al (2019) Hypoglycaemia, cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol 7(5):385–396

    Article  Google Scholar 

  43. Volke V, Katus U, Johannson A et al (2022) Systematic review and meta-analysis of head-to-head trials comparing sulfonylureas and low hypoglycaemic risk antidiabetic drugs. BMC Endocr Disord 22(1):251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pietruck F, Kribben A, Van TN et al (2005) Rosiglitazone is a safe and effective treatment option of new-onset diabetes mellitus after renal transplantation. Transpl Int Off J Eur Soc Organ Transplant 18(4):483–486

    CAS  Google Scholar 

  45. Gueler I, Mueller S, Helmschrott M et al (2013) Effects of vildagliptin (Galvus®) therapy in patients with type 2 diabetes mellitus after heart transplantation. Drug Des Devel Ther 7:297–303

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haidinger M, Werzowa J, Hecking M et al (2014) Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation—a randomized, double-blind, placebo-controlled trial. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 14(1):115–123

    Article  CAS  Google Scholar 

  47. Attallah N, Yassine L (2021) Linagliptin in the management of type 2 diabetes mellitus after kidney transplant. Transplant Proc 53(7):2234–2237

    Article  CAS  PubMed  Google Scholar 

  48. Werzowa J, Hecking M, Haidinger M et al (2013) Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation 95(3):456–462

    Article  CAS  PubMed  Google Scholar 

  49. Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14):1317–1326

    Article  CAS  PubMed  Google Scholar 

  50. Mason T, Coelho-Filho OR, Verma S et al (2021) Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging 14(6):1164–1173

    Article  PubMed  Google Scholar 

  51. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  PubMed  Google Scholar 

  52. Zannad F, Ferreira JP, Pocock SJ et al (2020) SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-reduced and DAPA-HF trials. Lancet Lond Engl 396(10254):819–829

    Article  Google Scholar 

  53. Salah HM, Al’Aref SJ, Khan MS et al (2021) Effect of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes—systematic review and meta-analysis of randomized placebo-controlled trials. Am Heart J 232:10–22

    Article  CAS  PubMed  Google Scholar 

  54. Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA et al (2021) Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 77(3):243–255

    Article  CAS  PubMed  Google Scholar 

  55. Packer M, Anker SD, Butler J et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383(15):1413–1424

    Article  CAS  PubMed  Google Scholar 

  56. La Grotta R, de Candia P, Olivieri F et al (2022) Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin. Cell Mol Life Sci CMLS 79(5):273

    Article  PubMed  Google Scholar 

  57. Cehic MG, Muir CA, Greenfield JR et al (2019) Efficacy and safety of empagliflozin in the management of diabetes mellitus in heart transplant recipients. Transplant Direct 5(5):e450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muir CA, Greenfield JR, MacDonald PS (2017) Empagliflozin in the management of diabetes mellitus after cardiac transplantation. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 36(8):914–916

    Article  Google Scholar 

  59. Halden TAS, Kvitne KE, Midtvedt K et al (2019) Efficacy and safety of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus. Diabetes Care 42(6):1067–1074

    Article  CAS  PubMed  Google Scholar 

  60. Song CC, Brown A, Winstead R et al (2021) Early initiation of sodium-glucose linked transporter inhibitors (SGLT-2i) and associated metabolic and electrolyte outcomes in diabetic kidney transplant recipients. Endocrinol Diabetes Metab 4(2):e00185

    Article  CAS  PubMed  Google Scholar 

  61. Chewcharat A, Prasitlumkum N, Thongprayoon C et al (2020) Efficacy and safety of sglt-2 inhibitors for treatment of diabetes mellitus among kidney transplant patients: a systematic review and meta-analysis. Med Sci Basel Switz 8(4):E47

    Google Scholar 

  62. Schwaiger E, Burghart L, Signorini L et al (2019) Empagliflozin in posttransplantation diabetes mellitus: a prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 19(3):907–919

    Article  CAS  Google Scholar 

  63. Marfella R, D’Onofrio N, Trotta MC et al (2022) Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts. Metabolism 127:154936

    Article  CAS  PubMed  Google Scholar 

  64. Jin J, Jin L, Luo K, Lim SW, Chung BH, Yang CW (2017) Effect of empagliflozin on tacrolimus-induced pancreas islet dysfunction and renal injury. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 17(10):2601–2616

    Article  CAS  Google Scholar 

  65. Villanueva JE, Gao L, Doyle A et al (2020) The cardioprotective potential of the sodium-glucose cotransporter 2 inhibitor empagliflozin in donor heart preservation. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 39(10):1151–1153

    Article  Google Scholar 

  66. Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844

    Article  CAS  PubMed  Google Scholar 

  67. Bray JJH, Foster-Davies H, Salem A et al (2021) Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Diabetes Obes Metab 23(8):1806–1822

    Article  CAS  PubMed  Google Scholar 

  68. Dai C, Walker JT, Shostak A et al (2020) Tacrolimus- and sirolimus-induced human β cell dysfunction is reversible and preventable. JCI Insight 5(1):130770

    Article  PubMed  Google Scholar 

  69. Wang Z, Wang M, Hu X et al (2019) Liraglutide, a glucagon-like peptide-1 receptor agonist, attenuates development of cardiac allograft vasculopathy in a murine heart transplant model. Transplantation 103(3):502–511

    Article  CAS  PubMed  Google Scholar 

  70. Halden TAS, Egeland EJ, Åsberg A et al (2016) GLP-1 restores altered insulin and glucagon secretion in posttransplantation diabetes. Diabetes Care 39(4):617–624

    Article  CAS  PubMed  Google Scholar 

  71. Singh P, Taufeeq M, Pesavento TE (2020) Comparison of the glucagon-like-peptide-1 receptor agonists dulaglutide and liraglutide for the management of diabetes in solid organ transplant: a retrospective study. Diabetes Obes Metab 22(5):879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thangavelu T, Lyden E, Shivaswamy V (2020) A retrospective study of glucagon-like peptide 1 receptor agonists for the management of diabetes after transplantation. Diabetes Ther 11(4):987–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sammour Y, Nassif M, Magwire M et al (2021) Effects of GLP-1 receptor agonists and SGLT-2 inhibitors in heart transplant patients with type 2 diabetes: initial report from a cardiometabolic center of excellence. J Heart Lung Transplant 40(6):426–429

    Article  PubMed  Google Scholar 

  74. Lo C, Toyama T, Oshima M et al (2020) Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst Rev 8:CD009966

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Raven.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standard statement

No studies involving human or animal participants were conducted by the authors specifically for the preparation of this article.

Informed consent

This review article did not require informed consent.

Additional information

Managed by Antonio Secchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raven, L.M., Muir, C.A., Macdonald, P.S. et al. Diabetes medication following heart transplantation: a focus on novel cardioprotective therapies—a joint review from endocrinologists and cardiologists. Acta Diabetol 60, 471–480 (2023). https://doi.org/10.1007/s00592-022-02018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-02018-3

Keywords

Navigation