Skip to main content
Log in

Symplectic Mapping for Trojan-Type Motion in the Elliptic Restricted Three-Body Problem

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A symplectic mapping for Trojan-type motion has been developed in the secularly changing elliptic restricted three-body problem. The mapping describes well the characteristics of Trojan-type dynamics at small eccentricities. By using this mapping the boundary of the stability region has been studied for different values of the initial eccentricities of hypothetical Jupiter's Trojans. It has been found that in the secularly changing elliptic case the chaotic diffusion at the border of the stability region is stronger than simply in the elliptic case. An explanation of this observation might be the destruction of the chain of islands of the 13:1 secondary resonance between the short and long period component of the Trojan-like motion, caused possibly by the indirect perturbations of Saturn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, E. W. and Shook, C. A.: 1964, Planetary Theory, Dover Publications, New York.

    Google Scholar 

  • Dvorak, R. and Tsiganis, K.: 2000, 'Why do Trojan ASCs (not) escape?', Celest. Mech. & Dyn. Astr. 78, 125-136.

    Google Scholar 

  • Érdi, B.: 1979, 'The motion of the perihelion of Trojan asteroids', Celest. Mech. 20, 59-67.

    Google Scholar 

  • ÉErdi, B.: 1997, 'The Trojan problem', Celest. Mech. & Dyn. Astr. 65, 149-164.

    Google Scholar 

  • Ferraz-Mello, S.: 1996, 'A symplectic mapping approach to the study of the stochasticity in asteroidal resonances', Celest. Mech. & Dyn. Astr. 65, 421-437.

    Google Scholar 

  • Giorgilli, A. and Skokos, Ch.: 1997, 'On the stability of the Trojan asteroids', Astron. Astrophys. 317, 254.

    Google Scholar 

  • Hadjidemetriou, J. D.: 1975, 'The stability of periodic orbits in the three-body problem', Celest. Mech. 12, 255-276.

    Google Scholar 

  • Hadjidemetriou, J. D.: 1991, 'Mapping models for Hamiltonian systems with application to resonant asteroid motion'. In: A. E. Roy (ed), Predictability, Stability, and Chaos in N-Body Dynamical Systems, Plenum Press, New York, pp. 157-175.

    Google Scholar 

  • Hadjidemetriou, J. D.: 1993, 'Asteroid motion near the 3:1 resonance', Celest. Mech. & Dyn. Astr. 56, 563-599.

    Google Scholar 

  • Hadjidemetriou, J. D.: 1999, 'A symplectic mapping model as a tool to understand the dynamics of 2/1 resonant asteroid motion', Celest. Mech. & Dyn. Astr. 73, 65-76.

    Google Scholar 

  • Holman, M. J. and Wisdom, J.: 1993, 'Dynamical stability in the outer solar system and the delivery of short period comets', Astron. J. 105, 1987-1999.

    Google Scholar 

  • Levison, H., Shoemaker, E. M. and Shoemaker, C. S.: 1997, 'The dispersal of the Trojan asteroid swarm', Nature 385, 42-44.

    Google Scholar 

  • Nobili, A. M., Milani, A. and Carpino, M.: 1989, 'Fundamental frequencies and small divisors in the orbits of the outer planets', Astron. Astrophys. 210, 313-336.

    Google Scholar 

  • Roig, F. and Feraz-Mello, S.: 1999, 'A symplectic mapping approach of the dynamics of the Hecuba gap', Planet. Space Sci. 47, 653-664.

    Google Scholar 

  • Sándor, Zs.: 2001a, 'A mapping model for the coorbital dynamics in the restricted three-body problem'. In: F. Freistetter, R. Dvorak and B. Érdi (eds), Proceedings of the 2nd Austrian Hungarian Workshop on Trojans and Related Topics, Eötvös University Press, Budapest, pp. 115-124.

    Google Scholar 

  • Sándor, Zs.: 2001b, 'Mapping representations of the coorbital dynamics'. In: E. Forg´acs-Dajka and Zs. Sándor (eds), National Postgraduate Reunion in Astronomy and Astrophysics, Publ. Astron. Dept. Eötvös Univ. Vol. 11, pp. 29-34.

  • Sándor, Zs. and Morais, M. H.: 2001,'A mapping model for the coorbital problem'. In H. Pretka-Ziomek et al. (eds), Dynamics of Natural and Artificial Celestial Bodies, Kluwer Academic Publishers, Dordrecht, pp. 263-264.

    Google Scholar 

  • Sándor, Zs., Érdi, B. and Murray, C. D.: 2002, 'Symplectic mappings of co-orbital motion in the restricted problem of three bodies', Celest. Mech. & Dyn. Astron. 84, 355-368.

    Google Scholar 

  • Tsiganis, K., Dvorak, R. and Pilat-Lohinger, E.: 2000, 'Thersites a jumping Trojan?', Astron. Astrophys. 354, 1091-1100.

    Google Scholar 

  • Wisdom, J.: 1982, 'The origin of the Kirkwood gaps: A mapping technique for asteroidal motion near the 3/1 commensurability', Astron. J. 87, 577-593.

    Google Scholar 

  • Wisdom, J.: 1987, 'Urey Prize Lecture-Chaotic dynamics in the solar system', Icarus 72, 241-275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sándor, Z., Érdi, B. Symplectic Mapping for Trojan-Type Motion in the Elliptic Restricted Three-Body Problem. Celestial Mechanics and Dynamical Astronomy 86, 301–319 (2003). https://doi.org/10.1023/A:1024552601635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024552601635

Navigation