Skip to main content
Log in

Classifying orbits in the restricted three-body problem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The case of the planar circular restricted three-body problem is used as a test field in order to determine the character of the orbits of a small body which moves under the gravitational influence of the two heavy primary bodies. We conduct a thorough numerical analysis on the phase space mixing by classifying initial conditions of orbits and distinguishing between three types of motion: (1) bounded, (2) escape and (3) collisional. The presented outcomes reveal the high complexity of this dynamical system. Furthermore, our numerical analysis shows a remarkable presence of fractal basin boundaries along all the escape regimes. Interpreting the collisional motion as leaking in the phase space, we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We also determined the escape and collisional basins and computed the corresponding escape/collisional times. We hope our contribution to be useful for a further understanding of the escape and collisional mechanism of orbits in the restricted three-body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. It should be emphasized that the momenta \(\dot{x}\) and \(\dot{y}\) are not the canonical momenta \(p_x\) and \(p_y\), respectively.

  2. An infinite number of regions of (stable) quasi-periodic (or small scale chaotic) motion is expected from classical chaos theory.

References

  1. Aguirre, J., Vallego, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64, 066208-1–066208-11 (2001)

    Article  Google Scholar 

  2. Aguirre, J., Sanjuán, M.A.F.: Limit of small exits in open Hamiltonian systems. Phys. Rev. E 67, 056201-1–056201-7 (2003)

    Article  Google Scholar 

  3. Aguirre, J., Vallego, J.C., Sanjuán, M.A.F.: Wada basins and unpredictability in Hamiltonian and dissipative systems. Int. J. Mod. Phys. B 17, 4171–4175 (2003)

    Article  MATH  Google Scholar 

  4. Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)

    Article  Google Scholar 

  5. Aguirregabiria, J.M.: Chaotic scattering around black holes. Phys. Lett. A 224, 234–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Altmann, E.G., Portela, J.S.E., Tél, T.: Leaking chaotic systems. Rev. Mod. Phys. 85, 869–918 (2013)

    Article  Google Scholar 

  7. Barrio, R., Blesa, F., Serrano, S.: Fractal structures in the Hénon-Heiles Hamiltonian. Europhys. Lett. 82, 10003-1–10003-6 (2008)

    Article  Google Scholar 

  8. Barrio, R., Blesa, F., Serrano, S.: Bifurcations and safe regions in open Hamiltonians. New J. Phys. 11, 053004-1–053004-12 (2009a)

    Article  Google Scholar 

  9. Barrio, R., Blesa, F., Serrano, S.: Periodic, escape and chaotic orbits in the Copenhagen and the \((n + 1)\)-body ring problems. Commun. Nonlinear Sci. Numer. Simul. 14, 2229–2238 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  10. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  11. Benet, L., Trautman, D., Seligman, T.: Chaotic scattering in the restricted three-body problem. I. The Copenhagen problem. Celest. Mech. Dyn. Astron. 66, 203–228 (1996)

    Article  Google Scholar 

  12. Benet, L., Seligman, T., Trautman, D.: Chaotic scattering in the restricted three-body problem II. Small mass parameters. Celest. Mech. Dyn. Astron. 71, 167–189 (1998)

    Article  Google Scholar 

  13. Bleher, S., Grebogi, C., Ott, E., Brown, R.: Fractal boundaries for exit in Hamiltonian dynamics. Phys. Rev. A 38, 930–938 (1988)

    Article  MathSciNet  Google Scholar 

  14. Contopoulos, G.: Asymptotic curves and escapes in Hamiltonian systems. Astron. Astrophys. 231, 41–55 (1990)

    MathSciNet  Google Scholar 

  15. Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. Contopoulos, G., Kaufmann, D.: Types of escapes in a simple Hamiltonian system. Astron. Astrophys. 253, 379–388 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Contopoulos, G., Kandrup, H.E., Kaufmann, D.: Fractal properties of escape from a two-dimensional potential. Phys. D 64, 310–323 (1993)

    Article  MATH  Google Scholar 

  18. Contopoulos, G., Harsoula, M., Lukes-Gerakopoulos, G.: Periodic orbits and escapes in dynamical systems. Celest. Mech. Dyn. Astron. 113, 255–278 (2012)

    Article  MathSciNet  Google Scholar 

  19. Darwin, G.H.: Periodic orbits. Acta Math. 21, 99–242 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Assis, S.C., Terra, M.O.: Escape dynamics and fractal basin boundaries in the planar Earth–Moon system. Celest. Mech. Dyn. Astron. 120, 105–130 (2014)

    Article  Google Scholar 

  21. de Moura, A.P.S., Grebogi, C.: Countable and uncountable boundaries in chaotic scattering. Phys. Rev. E 66, 046214 (2002)

    Article  MathSciNet  Google Scholar 

  22. de Moura, A.P.S., Letelier, P.S.: Fractal basins in Hénon-Heiles and other polynomial potentials. Phys. Lett. A 256, 362–368 (1999)

    Article  MathSciNet  Google Scholar 

  23. Eckhardt, B.: Fractal properties of scattering singularities. J. Phys. A 20, 5971–5979 (1987)

    Article  MathSciNet  Google Scholar 

  24. Ernst, A., Just, A., Spurzem, R., Porth, O.: Escape from the vicinity of fractal basin boundaries of a star cluster. Mon. Not. R. Astron. Soc. 383, 897–906 (2008)

    Article  Google Scholar 

  25. Ernst, A., Peters, T.: Fractal basins of escape and the formation of spiral arms in a galactic potential with a bar. Mon. Not. R. Astron. Soc. 443, 2579–2589 (2014)

    Article  Google Scholar 

  26. Hénon, M.: Numerical exploration of the restricted problem, V. Astron. Astrophys. 1, 223–238 (1969)

    MATH  Google Scholar 

  27. Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  Google Scholar 

  28. Hut, P.: The topology of three-body scattering. Astron. J. 88, 1549–1559 (1983)

    Article  MathSciNet  Google Scholar 

  29. Jefferys, W.H.: An Atltas of Surfaces of Section for the Restricted Problem of Three Bosies. Department of Astronomy, University of Texas, Austin (1971)

    Google Scholar 

  30. Jung, C.: Can the integrability of Hamiltonian systems be decided by the knowledge of scattering data? J. Phys. A 20, 1719–1732 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jung, C., Lipp, C., Seligman, T.H.: The inverse scattering problem for chaotic Hamiltonian systems. Ann. Phys. 275, 151–189 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jung, C., Mejia-Monasterio, C., Seligman, T.H.: Scattering one step from chaos. Phys. Lett. A 198, 306–314 (1995)

    Article  Google Scholar 

  33. Jung, C., Pott, S.: Classical cross section for chaotic potential scattering. J. Phys. A 22, 2925–2938 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jung, C., Richter, P.H.: Classical chaotic scattering-periodic orbits, symmetries, multifractal invariant sets. J. Phys. A 23, 2847–2866 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jung, C., Scholz, H.J.: Cantor set structures in the singularities of classical potential scattering. J. Phys. A 20, 3607–3618 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jung, C., Tél, T.: Dimension and escape rate of chaotic scattering from classical and semiclassical cross section data. J. Phys. A 24, 2793–2805 (1991)

    Article  Google Scholar 

  37. Kandrup, H.E., Siopis, C., Contopoulos, G., Dvorak, R.: Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems. Chaos 9, 381–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kennedy, J., Yorke, J.A.: Basins of Wada. Phys. D 51, 213–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lai, Y.-C., Grebogi, C., Blümel, R., Kan, I.: Crisis in chaotic scattering. Phys. Rev. Let. 71, 2212–2215 (1993)

    Article  Google Scholar 

  40. Moulton, F.R.: Periodic Orbits. Carnegie Institute, Washington (1920)

    MATH  Google Scholar 

  41. Nagler, J.: Crash test for the Copenhagen problem. Phys. Rev. E 69, 066218 (2004). (Paper I)

    Article  MathSciNet  Google Scholar 

  42. Nagler, J.: Crash test for the restricted three-body problem. Phys. Rev. E 71, 026227 (2005). (Paper II)

    Article  MathSciNet  Google Scholar 

  43. Navarro, J.F., Henrard, J.: Spiral windows for escaping stars. Astron. Astrophys. 369, 1112–1121 (2001)

    Article  Google Scholar 

  44. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  45. Poincaré, H.: History of Modern Physics and Astronomy, vol. 13. AIP, New York (1993)

    Google Scholar 

  46. Poon, L., Campos, J., Ott, E., Grebogi, C.: Wada basins boundaries in chaotic scattering. Int. J. Bifurc. Chaos 6, 251–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  48. Schneider, J., Tél, T., Neufeld, Z.: Dynamics of “leaking” Hamiltonian systems. Phys. Rev. E 66, 066218-1–066218-6 (2002)

    Article  Google Scholar 

  49. Schneider, J., Tél, T.: Extracting flow structures from tracer data. Ocean Dyn. 53, 64–72 (2003)

    Article  Google Scholar 

  50. Seoane, J.M., Aguirre, J., Sanjuán, M.A.F., Lai, Y.C.: Basin topology in dissipative chaotic scattering. Chaos 16, 023101-1–023101-8 (2006)

    Article  Google Scholar 

  51. Seoane, J.M., Sanjuán, M.A.F., Lai, Y.C.: Fractal dimension in dissipative chaotic scattering. Phys. Rev. E 76, 016208-1–016208-6 (2007)

    Article  Google Scholar 

  52. Seoane, J.M., Sanjuán, M.A.F.: Exponential decay and scaling laws in noisy chaotic scattering. Phys. Lett. A 372, 110–116 (2008)

    Article  MATH  Google Scholar 

  53. Seoane, J.M., Huang, L., Sanjuán, M.A.F., Lai, Y.C.: Effects of noise on chaotic scattering. Phys. Rev. E 79, 047202-1–047202-4 (2009)

    Article  Google Scholar 

  54. Seoane, J.M., Sanjuán, M.A.F.: Escaping dynamics in the presence of dissipation and noisy in scattering systems. Int. J. Bifurc. Chaos 9, 2783–2793 (2010)

    Article  Google Scholar 

  55. Seoane, J.M., Sanjuán, M.A.F.: New developments in classical chaotic scattering. Rep. Prog. Phys. 76, 016001 (2013)

    Article  Google Scholar 

  56. Simó, C.: Dynamical properties in Hamiltonian systems. Applications to celestial mechanics. Text of the lectures delivered at the Centre de Recerca Matemàtica on January 27–31 (2014)

  57. Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

  58. Tuval, I., Schneider, J., Piro, O., Tél, T.: Opening up fractal structures of three-dimensional flows via leaking. Europhys. Lett. 65, 633–639 (2004)

    Article  Google Scholar 

  59. Zotos, E.E.: Trapped and escaping orbits in axially symmetric galactic-type potential. PASA 29, 161–173 (2012)

    Article  Google Scholar 

  60. Zotos, E.E.: A Hamiltonian system of three degrees of freedom with eight channels of escape: the great escape. Nonlinear Dyn. 76, 1301–1326 (2014a)

    Article  MathSciNet  Google Scholar 

  61. Zotos, E.E.: Escapes in Hamiltonian systems with multiple exit channels: Part I. Nonlinear Dyn. 78, 1389–1420 (2014)

    Article  MathSciNet  Google Scholar 

  62. Zotos, E.E.: Crash test for the Copenhagen problem with oblateness. Celest. Mech. Dyn. Astron. 122, 75–99 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to express my warmest thanks to J. Nagler and Ch. Jung for all the illuminating and inspiring discussions during this research. My thanks also go to the anonymous referees for the careful reading of the manuscript and for all the apt suggestions and comments which allowed us to improve both the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Ethics declarations

Funding:

The author states that he has not received any research grants.

Conflict of interest:

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotos, E.E. Classifying orbits in the restricted three-body problem. Nonlinear Dyn 82, 1233–1250 (2015). https://doi.org/10.1007/s11071-015-2229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2229-4

Keywords

Navigation