Skip to main content
Log in

On the temperature dependence of the probability of structural interisomer transitions of molecules

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The properties of the intersection surface of the potential energy surfaces of structural isomers and kinetic characteristics of the reaction, including the physical meaning of the Arrhenius law parameters, are analyzed in detail. A number of corollaries important for determining the probability of the interisomer transition and the influence of the temperature factor on the probability and the pattern of this structural transformation were formulated. The theoretical model used describes the experimental regularities (Arrhenius law) and allows one to calculate the relevant parameters. The reason for manifestation of this regularity is the superposition of two factors, namely, the exponential dependence of the transition probability on the reciprocal temperature and the linear temperature dependence of the level of energy for which this probability is the highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Gribov, Izv. Akad. Nauk, Ser. Khim., 2002, 213 [Russ. Chem. Bull., Int. Ed., 2002, 51, 222].

  2. V. I. Gol'danskii, L. I. Trakhtenberg, and V. I. Flerov, Tunnel'nye yavleniya v khimicheskoi fizike [Tunneling Phenomena in Chemical Physics], Nauka, Moscow, 1986, 293 pp. (in Russian).

    Google Scholar 

  3. F. Laermer, T. Elsaesser, and W. Kaiser, Chem. Phys. Lett., 1988, 148, 119.

    Google Scholar 

  4. A. I. Voronin and V. I. Osherov, Dinamika molekulyarnykh reaktsii [Dynamics of Molecular Reactions], Nauka, Moscow, 1990, 420 pp. (in Russian).

    Google Scholar 

  5. B. J. Schwartz, L. A. Peteanu, and C. B. Harris, J. Phys. Chem., 1992, 96, 3591.

    Google Scholar 

  6. S. Sakai, Chem. Phys. Lett., 2000, 319, 687.

    Google Scholar 

  7. W. Fuß, W. E. Schmid, and S. A. Trushin, Chem. Phys. Lett., 2001, 342, 91.

    Google Scholar 

  8. Y. Haas and S. Zilberg, J. Photochem. Photobiol., A, 2001, 144, 221.

    Google Scholar 

  9. K. Stock, T. Bizjak, and S. Lochbrunner, Chem. Phys. Lett., 2002, 354, 409.

    Google Scholar 

  10. J. Leitich, U. Ritter-Thomas, and I. Heise, J. Photochem. Photobiol., A, 2002, 147, 157; 177.

    Google Scholar 

  11. L. R. Khundkar, R. A. Markus, and A. H. Zewail, J. Phys. Chem., 1983, 87, 2473.

    Google Scholar 

  12. E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, and A. H. Zewail, Nature, 1992, 355, 66.

    Google Scholar 

  13. J. S. Baskin, L. Baňares, S. Pedersen, and A. H. Zewail, J. Phys. Chem., 1996, 100, 11920.

    Google Scholar 

  14. Femtochemistry: Ultrafast Chemical and Physical Processes in Molecular Systems, Ed. M. Chergui, World Scientific, Singapore, 1996.

    Google Scholar 

  15. A. H. Zewail, Adv. Chem. Phys., 1997, 101, 892.

    Google Scholar 

  16. D. Zhong, E. W.-G. Diau, T. M. Bernhargt, S. De Feyter, J. D. Roberts, and A. H. Zewail, Chem. Phys. Lett., 1998, 298, 129.

    Google Scholar 

  17. A. N. Petrukhin, S. A. Antipin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, D. G. Tovbin, V. A. Barachevskii, Yu. P. Strokach, and O. M. Sarkisov, Khim. Fiz., 2000, 19, 90 [Chem. Phys., 2000, 19 (Engl. Transl.)].

    Google Scholar 

  18. The Reaction Path in Chemistry: Current Approaches and Perspectives, Ed. D. Heidrich, Kluwer, Dordrecht, 1995.

    Google Scholar 

  19. M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. I. Klein, J. Phys. Chem., 1996, 100, 12788.

    Google Scholar 

  20. D. Reichardt, V. Bonacic-Koutecky, P. Fantucci, and J. Jellinek, Chem. Phys. Lett., 1997, 279, 129.

    Google Scholar 

  21. G. Li and W. L. Hase, J. Am. Chem. Soc., 1999, 121, 7124.

    Google Scholar 

  22. T. Horii, Y. Abe, and R. Nakao, J. Photochem. Photobiol., A, 2001, 144, 119.

    Google Scholar 

  23. Sh. Li, X. Yu, Zh. Xu, Z. Li, and Ch. Sun, J. Mol. Struct. (THEOCHEM), 2001, 540, 221.

    Google Scholar 

  24. R. M. Aminova and E. Ermakova, Chem. Phys. Lett., 2002, 359, 184.

    Google Scholar 

  25. P. Klán, J. Literák, and S. Relich, J. Photochem. Photobiol., A, 2001, 143, 49.

    Google Scholar 

  26. L. A. Gribov, Ot teorii spektrov k teorii khimicheskikh prevrashchenii [From the Theory of Spectra to the Theory of Chemical Transformations], Editorial URSS, Moscow, 2001, 365 pp. (in Russian).

    Google Scholar 

  27. L. A. Gribov and V. A. Dement´ev, Metody i algoritmy vychislenii v teorii kolebatel´nykh spektrov molekul [Calculation Methods and Algorithms in the Theory of the Vibrational Spectra of Molecules], Nauka, Moscow, 1981, 356 pp. (in Russuan).

    Google Scholar 

  28. L. A. Gribov, V. A. Dement´ev, and A. T. Todorovskii, Interpretirovannye kolebatel´nye spektry alkanov, alkenov i proizvodnykh benzola [Interpreted Vibrational Spectra of Alkanes, Alkenes, and Benzene Derivatives], Nauka, Moscow, 1986, 495 pp. (in Russian).

    Google Scholar 

  29. L. A. Gribov, V. A. Dement´ev, O. V. Novoselova, Inter-pretirovannye kolebatel´nye spektry uglevodorodov s izolirovannymi i sopryazhennymi kratnymi svyazyami [Interpreted Vibrational Spectra of Hydrocarbons with Isolated and Conjugated Multiple Bonds], Nauka, Moscow, 1987, 471 pp. (in Russian).

    Google Scholar 

  30. M. E. Elyashberg, Yu. Z. Karasev, V. A. Dement´ev, and L. A. Gribov, Interpretirovannye kolebatel´nye spektry uglevodorodov-proizvodnykh tsiklogeksana i tsiklopentana [Interpreted Vibrational Spectra of Hydrocarbons, Cyclohexane and Cyclopentane Derivatives], Nauka, Moscow, 1988, 376 pp. (in Russian).

    Google Scholar 

  31. L. A. Gribov, V. I. Baranov, and D. Yu. Zelentsov, Elektronno-kolebatel´nye spektry mnogoatomnykh molekul. Teoriya i metody rascheta [Electronic-Vibrational Spectra of Polyatomic Molecules. Theory and Calculation Methods], Nauka, Moscow, 1997, 475 pp. (in Russian).

    Google Scholar 

  32. L. A. Gribov and A. I. Pavlyuchko, Variatsionnye metody resheniya angarmonicheskikh zadach v teorii kolebatel´nykh spektrov molekul [Variational Methods of the Solution of Anharmonic Problems in the Theory of Vibrational Spectra of Molecules], Nauka, Moscow, 1998, 333 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, V.I., Gribov, L.A. On the temperature dependence of the probability of structural interisomer transitions of molecules. Russian Chemical Bulletin 52, 802–810 (2003). https://doi.org/10.1023/A:1024471519624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024471519624

Navigation