Skip to main content
Log in

On the Order Parameter of the Continuous Phase Transition in the Classical and Quantum Mechanical Limits

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The mean-field theory is revisited in the classical and quantum mechanical limits. Taking into account the boundary conditions at the phase transition and the third law of the thermodynamics, the physical properties of the ordered and disordered phases are reported. The equation for the order parameter predicts the occurrence of a saturation of \(\Psi ^2\) ~1 near \(\Theta _S\), and the temperature below the quantum mechanical ground state is reached. The theoretical predictions are also compared with high-resolution thermal expansion data of SrTiO\(_{\text {3}}\) single crystals and other some previous results. An excellent agreement has been found suggesting a universal behavior of the theoretical model to describe continuous structural phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.D. Landau, On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937)

    Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Stat. Phys. 5 (1959)

  3. Y. Mnyukh, Second-order phase transitions, Landau and his successors. Am. J. Condens. Matter Phys. 3(2), 25–30 (2013)

  4. U. Bismayer, E.K.H. Salje, M. Jansen, S. Dreher, Raman scattering near the structural phase transition of As2O5: Order parameter treatment. J. Phys. C Solid State Phys. 19(23), 4537 (1986)

    Article  ADS  Google Scholar 

  5. A.P. Cracknell, J. Lorenc, J. Przystawa, Landau’s theory of second-order phase transitions and its application to ferromagnetism. J. Phys. C Solid State Phys. 9(9), 1731 (1976)

    Article  ADS  Google Scholar 

  6. M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions. Int. J. Eng. Sci. 44(8–9), 529–539 (2006)

    Article  MathSciNet  Google Scholar 

  7. K.A. Müller, W. Berlinger, Static critical exponents at structural phase transitions. Phys. Rev. Lett. 26(1), 13 (1971)

    Article  ADS  Google Scholar 

  8. M. Sato, Y. Soejima, N. Ohama, A. Okazaki, H.J. Scheel, K.A. Müller, The lattice constant vs. temperature relation around the 105 K transition of a flux-grown SrTiO3 crystal. Phase Transit. 5(3), 207–218 (1985)

  9. S.G. Brush, History of the Lenz-Ising model. Rev. Mod. Phys. 39(4), 883 (1967)

    Article  ADS  Google Scholar 

  10. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3-4), 117 (1944)

  11. S.A. Hayward, E. Salje, Cubic-tetragonal phase transition in SrTiO3 revisited: Landau theory and transition mechanism. Phase Transit. 68(3), 501–522 (1999)

    Article  Google Scholar 

  12. D.J. Kok, K. Irmscher, M. Naumann, C. Guguschev, Z. Galazka, R. Uecker, Temperature-dependent optical absorption of SrTiO3. Phys. Status Solidi A 212(9), 1880–1887 (2015)

    Article  ADS  Google Scholar 

  13. M.I. Marqués, C. Aragó, J.A. Gonzalo, Quantum paraelectric behavior of SrTiO3: Relevance of the structural phase transition temperature. Phys. Rev. B 72(9), 092103 (2005)

  14. K.P. O‘donnell, X. Chen, Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 58(25), 2924–2926 (1991)

  15. E.K.H. Salje, Application of Landau theory for the analysis of phase transitions in minerals. Phys. Rep. 215(2), 49–99 (1992)

    Article  ADS  Google Scholar 

  16. E.K.H. Salje, B. Wruck, S. Marais, Order parameter saturation at low temperatures-numerical results for displacive and O/D systems. Ferroelectrics 124(1), 185–188 (1991)

    Article  Google Scholar 

  17. E.K.H. Salje, B. Wruck, H. Thomas, Order-parameter saturation and low-temperature extension of Landau theory. Z. Phys. B: Condens. Matter 82(3), 399–404 (1991)

    Article  ADS  Google Scholar 

  18. H. Thomas, Structural phase transitions and soft modes. Structural Phase Transitions and Soft Modes. Eds. E.J. Samuelsen, E. Andersen and J. Feder Oslo, Bergen, Tromsö: Universitetsforlaget (1971)

  19. A. Bussmann-Holder, H. Büttner, A.R. Bishop, Polar-soft-mode-driven structural phase transition in SrTiO3. Phys. Rev. Lett. 99(16), 167603 (2007)

  20. M.A. Carpenter, E.K.H. Salje, A. Graeme-Barber, Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral. 621–691 (1998)

  21. R.A. Cowley, Soft modes and structural phase transitions. Integr. Ferroelectr. 133(1), 109–117 (2012)

  22. G. Venkataraman, Soft modes and structural phase transitions. Bull. Mater. Sci. 1(3–4), 129–170 (1979)

    Article  Google Scholar 

  23. U. Bismayer, E.K.H. Salje, A.M. Glazer, J. Cosier, Effect of strain-induced order-parameter coupling on the ferroelastic behaviour of lead phosohate-arsenate. Phase Transit. 6(2), 129–151 (1986)

    Article  Google Scholar 

  24. K.A. Müller, W. Berlinger, F. Waldner, Characteristic structural phase transition in Perovskite-type compounds. Phys. Rev. Lett. 21(12), 814 (1968)

    Article  ADS  Google Scholar 

  25. E.K.H. Salje, A. Ridgwell, B. Guttler, B. Wruck, M. Dove, G. Dolino, On the displacive character of the phase transition in quartz: a hard-mode spectroscopy study. J. Phys. Condens. Matter 4(2), 571 (1992)

    Article  ADS  Google Scholar 

  26. J.J. Neumeier, R.K. Bollinger, G.E. Timmins, C.R. Lane, R.D. Krogstad, J. Macaluso, Capacitive-based dilatometer cell constructed of fused quartz for measuring the thermal expansion of solids. Rev. Sci. Instrum. 79(3), 033903 (2008)

  27. A. Okazaki, M. Kawaminami, Lattice constant of strontium titanate at low temperatures. Mater. Res. Bull. 8(5), 545–550 (1973)

    Article  Google Scholar 

  28. F.S. Oliveira, C.A.M. dos Santos, M.S. da Luz, J.J. Neumeier. To be submitted (2021)

  29. P.T. Landsberg, Foundations of thermodynamics. Rev. Mod. Phys. 28(4), 363 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Levy, R. Alicki, R. Kosloff, Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 85(6), 061126 (2012)

  31. A.B. Pippard, Elements of classical thermodynamics: for advanced students of physics. Cambridge University Press (1964)

  32. J. Venetis, An analytic exact form of the unit step function. Math. Stat. 2(7), 235–237 (2014)

    Google Scholar 

  33. M. Liu, T.R. Finlayson, T.F. Smith, High-resolution dilatometry measurements of SrTiO3 along cubic and tetragonal axes. Phys. Rev. B 55(6), 3480 (1997)

    Article  ADS  Google Scholar 

  34. S. Tsunekawa, H.F.J. Watanabe, H. Takei, Linear thermal expansion of SrTiO3. Phys. Status Solidi A 83(2), 467–472 (1984)

    Article  ADS  Google Scholar 

  35. The noise in \(\Omega\) curve has to do with derivative point by point which is very susceptible to any small unexpected change in temperature or capacitance, due to the high sensitivity instrument used for the HRTE measurements (see ref. 26)

  36. J. Feder, E. Pytte, Theory of a structural phase transition in Perovskite-type crystals. II. Interaction with elastic strain. Phys. Rev. B 1(12), 4803 (1970)

  37. E. Pytte, J. Feder, Theory of a structural phase transition in Perovskite-type crystals. Phys. Rev. 187(3), 1077 (1969)

    Article  ADS  Google Scholar 

  38. J.F. Scott, Soft-mode spectroscopy: Experimental studies of structural phase transitions. Rev. Mod. Phys. 46(1), 83 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is based upon support by the FAPESP (2009/54001-2 and 2019/12798-3), FAPEMIG (PPM-00559-16), CNPq (308135/2017-2), and CAPES - Finance code 001. Work at Montana State University was conducted with financial support from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award No. DE-SC0016156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Taking the quantum mechanical model for the continuous transition predicted by Salje et al. [17], the free energy is given generically by

$$\begin{aligned} G = G_{\text {D}} + a \left[ \coth \left( \Theta _{\text {S}}/T\right) -\coth \left( \Theta _{\text {S}}/T_{\text {C}} \right) \right] \Psi ^4 + b\Psi ^4. \end{aligned}$$
(31)

Making

$$\begin{aligned} \frac{\partial G}{\partial \left( \Psi ^2\right) } = 0, \end{aligned}$$
(32)

provides

$$\begin{aligned} \Psi ^2 = 0, \end{aligned}$$
(33)

for \(T > T_{\text {C}}\) (disordered phase), and

$$\begin{aligned} \Psi ^2 = - \frac{a\left[ \coth {\left( \Theta _{\text {S}}/T\right) } - \coth {\left( \Theta _{\text {S}}/T_{\text {C}} \right) }\right] }{2b}, \end{aligned}$$
(34)

for \(T \le T_{\text {C}}\) (ordered phase).

Taking \(\Psi ^2 = 1\) for T = 0, implies

$$\begin{aligned} \frac{2b}{a} = - \left[ 1 - \coth {\left( \Theta _{\text {S}}/T_{\text {C}}\right) }\right] , \end{aligned}$$
(35)

which is a normalization for \(\Psi ^2\).

Thus

$$\begin{aligned} \Psi ^2 = \frac{\left[ \coth {\left( \Theta _{\text {S}}/T\right) } - \coth {\left( \Theta _{\text {S}}/T_{\text {C}} \right) }\right] }{\left[ \coth {\left( \Theta _{\text {S}}/T_{\text {C}}\right) } - 1\right] }, \end{aligned}$$
(36)

implies

$$\begin{aligned} G =&\; G_{\text {D}} - a \left[ \coth {\left( \Theta _{\text {S}}/T_{\text {C}}\right) } - \coth {\left( \Theta _{\text {S}}/T\right) } \right] \Psi ^2 \\& - a/2\left[ 1 - \coth {\left( \Theta _{\text {S}}/T_{\text {C}}\right) }\right] \Psi ^4, \end{aligned}$$
(37)

or

$$\begin{aligned} G = G_{\text {D}} - \frac{a}{2}\frac{\left[ \coth {\left( \Theta _{\text {S}} / T_{\text {C}}\right) }-\coth {\left( \Theta _{\text {S}} / T \right) }\right] ^2}{\coth {\left( \Theta _{\text {S}} / T_{\text {C}}\right) }-1}. \end{aligned}$$
(38)

Such as \(G = G(T,P)\), then

$$\begin{aligned} \left( \frac{\partial G}{\partial T} \right) _P = - S, \end{aligned}$$
(39)

or

$$\begin{aligned} -S = -S_{\text {D}} + a\Psi ^2\left( \Theta _{\text {S}}/T^2\right) \text {csch}^2\left( \Theta _{\text {S}}/T\right) , \end{aligned}$$
(40)

which provides the following equation for the entropy of the disordered phase, making S = 0 and \(\Psi ^2\) = 1 as \(T \rightarrow\) 0,

$$\begin{aligned} S_{\text {D}} = a \left( \Theta _{\text {S}}/T^2\right) \text {csch}^2\left( \Theta _{\text {S}}/T \right) . \end{aligned}$$
(41)

Futhermore, when \(\Theta _{\text {S}} \rightarrow\) 0, \(S_{\text {D}} \rightarrow S_{\text {C}}\), and \(a \rightarrow S_{\text {C}}\Theta _{\text {S}}\) due to the classical limit which can be noticed in Fig. 2a. Thus,

$$\begin{aligned} S_{\text {D}} = S_{\text {C}}\left( \Theta _{\text {S}}/T\right) ^2\text {csch}^2\left( \Theta _{\text {S}}/T \right) , \end{aligned}$$
(42)

but taking

$$\begin{aligned} \left( \frac{\partial G_{\text {D}}}{\partial T} \right) _P = - S_{\text {D}}, \end{aligned}$$
(43)

one can show that

$$\begin{aligned} G_{\text {D}} = G^0 - S_{\text {C}} \Theta _{\text {S}} \coth {\left( \Theta _{\text {S}}/T \right) }, \end{aligned}$$
(44)

where \(G^0\) is a reference for the free energy and appears due to the integration constant.

Thus,

$$\begin{aligned} G =&\; G^0 - S_{\text {C}}\Theta _{\text {S}}\coth {\left( \Theta _{\text {S}}/T\right) } - S_{\text {C}}\Theta _{\text {S}}\biggl[ \coth {\left( \Theta _{\text {S}}/T_{\text {C}} \right) }\\& - \coth {\left( \Theta _{\text {S}}/T \right) } \biggr] \Psi ^2 - \frac{S_{\text {C}}\Theta _{\text {S}}}{2}\left[ 1 - \coth {\left( \Theta _{\text {S}} / T_{\text {C}}\right) } \right] \Psi ^4. \end{aligned}$$
(45)

which is the equation by Salje et al. [17], with pre-factors determined based upon the boundary conditions at the critical temperature and absolute zero.

Then,

$$\begin{aligned} G = G_{\text {D}} - \frac{S_{\text {C}} \Theta _{\text {S}}}{2}\frac{\left[ \coth {\left( \Theta _{\text {S}} / T_{\text {C}}\right) }-\coth {\left( \Theta _{\text {S}} / T \right) }\right] ^2}{\coth {\left( \Theta _{\text {S}} / T_{\text {C}}\right) }-1}, \end{aligned}$$
(46)

which provides

$$\begin{aligned} -S = -S_{\text {D}} + S_{\text {C}}\Theta _{\text {S}}\Psi ^2\text {csch}^2\left( \Theta _{\text {S}}/T\right) \end{aligned}$$
(47)

or

$$\begin{aligned} S = S_{\text {D}} - S_{\text {D}}\Psi ^2, \end{aligned}$$
(48)

that leads to

$$\begin{aligned} S = S_{\text {D}}\left( 1 - \Psi ^2\right) , \end{aligned}$$
(49)

which has the same format as the equation for the classical limit, but takes into account the \(\Psi ^2\) saturation effect near \(T = \Theta _{\text {S}}\).

With reagard to thermal expansion, it can be obtained using the following relation for \(\Omega\) [31]

$$\begin{aligned} -\left( \frac{\partial S}{\partial P}\right) _T = \left( \frac{\partial V}{\partial T}\right) _P = V_{\text {C}}\Omega , \end{aligned}$$
(50)

which provides

$$\begin{aligned} - \left( \frac{\partial S}{\partial P}\right) _T = - \left( \frac{\partial S_{\text {D}}}{\partial P}\right) _T \left( 1-\Psi ^2\right) +S_{\text {D}}\left( \frac{\partial \Psi ^2}{\partial P}\right) _T, \end{aligned}$$
(51)

where

$$\begin{aligned} \left( \frac{\partial \Psi ^2}{\partial P}\right) _T = \frac{\Theta _{\text {S}}}{T_{\text {C}}^2} \frac{\left[ \coth {\left( \Theta _{\text {S}}/T\right) }-1\right] }{\left[ \coth {\left( \Theta _{\text {S}}/T_{\text {C}}\right) }-1\right] ^2} \text {csch}^2\left( \Theta _{\text {S}} / T_{\text {C}}\right) \left( \frac{d T_{\text {C}}}{d P}\right) _T, \end{aligned}$$
(52)

and \(\Theta _{\text {S}}\) is assumed to be constant with pressure and dependent only of the temperature. Thus, one can write

$$\begin{aligned} V_{\text {C}}\Omega =&\; V_{\text {C}}\Omega _{\text {D}}\left( 1-\Psi ^2\right) +S_{\text {D}}\frac{\Theta _{\text {S}}}{T_{\text {C}}^2} \frac{\left[ \coth {\left( \Theta _{\text {S}}/T\right) }-1\right] }{\left[ \coth {\left( \Theta _{\text {S}}/T_{\text {C}}\right) }-1\right] ^2} \text {csch}^2\\&\left( \Theta _{\text {S}} / T_{\text {C}}\right) \left( \frac{d T_{\text {C}}}{d P}\right) _T, \end{aligned}$$
(53)

but at T = \(T_{\text {C}}\), \(\Omega\) = \(\Omega _{\text {O}}\), providing

$$\begin{aligned} V_{\text {C}}\left( \Omega _{\text {O}}-\Omega _{\text {D}}\right) = S_{\text {D}}\frac{\Theta _{\text {S}}}{T_{\text {C}}^2} \frac{\text {csch}^2\left( \Theta _{\text {S}}/T_{\text {C}}\right) }{\left[ \coth {\left( \Theta _{\text {S}}/T\right) }-1\right] } \left( \frac{d T_{\text {C}}}{d P}\right) _T, \end{aligned}$$
(54)

which gives

$$\begin{aligned} \Omega =&\; \Omega _{\text {O}}\left( 1-\Psi ^2\right) + S_{\text {D}}\frac{\Theta _{\text {S}}}{T_{\text {C}}^2} \frac{\text {csch}^2\left( \Theta _{\text {S}}/T_{\text {C}}\right) }{\left[ \coth {\left( \Theta _{\text {S}}/T\right) }-1\right] } \left( \frac{d T_{\text {C}}}{d P}\right) _T \left( 1-\Psi ^2\right) \\& -S_{\text {D}}\frac{\Theta _{\text {S}}}{T_{\text {C}}^2} \frac{\left[ \coth {\left( \Theta _{\text {S}}/T\right) }-1\right] }{\left[ \coth {\left( \Theta _{\text {S}}/T_{\text {C}}\right) }-1\right] ^2} \text {csch}^2\left( \Theta _{\text {S}} / T_{\text {C}}\right) \left( \frac{d T_{\text {C}}}{d P}\right) _T. \end{aligned}$$
(55)

After an algebraic work it is possible to show that the terms multiplied by \(S_{\text {D}}\) cancel each other, remembering that \(\left( 1 - \Psi ^2\right)\) is given by

$$\begin{aligned} \left( 1-\Psi ^2\right) = \frac{\coth {\Theta _{\text {S}}/T}-1}{\coth {\Theta _{\text {S}}/T_{\text {C}}}-1}, \end{aligned}$$
(56)

thus

$$\begin{aligned} \Omega = \Omega _{\text {O}}\left( 1-\Psi ^2\right) . \end{aligned}$$
(57)

Finally, based upon the equations for \(G_{\text {D}}\), G, \(S_{\text {D}}\), and S, it is possible to find the temperature dependencies for heat capacity at constant volume (\(C_v\)) and the internal energy (U) (not shown).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, C.A.M., Oliveira, F.S., da Luz, M.S. et al. On the Order Parameter of the Continuous Phase Transition in the Classical and Quantum Mechanical Limits. Braz J Phys 51, 1529–1538 (2021). https://doi.org/10.1007/s13538-021-00947-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00947-y

Keywords

Navigation