Skip to main content
Log in

Investigation of the Mechanism of Charge Carrier Migration in Glasses of the Li2O–P2O5 and LiF–LiPO3 Systems

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The activation volumes calculated from the experimental data on the effect exerted by high hydrostatic pressure on the electrical conductivity are compared with the mean fluctuation-microhole volumes calculated from the data on the microhardness of glasses in the Li2O–P2O5 and LiF–LiPO3 systems. The fluctuation-microhole volumes determined from the microhardness are compared with the molar volumes of defects in the structure of glasses. The results obtained indicate that the defect formation occurs according to Frenkel, whereas migration of ions (charge carriers) proceeds predominantly through the interstitial mechanism, which agree with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nachtrieb, N.H. and Lowson, A.B., Effect of Pressure on Self-Diffusion in White Phosphorus, J. Chem. Phys., 1995, vol. 23, no. 7, pp. 1193–1195.

    Google Scholar 

  2. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Ionics of Solids), St. Petersburg: St.-Peterburg. Gos. Univ., 2000.

    Google Scholar 

  3. Solids under Pressure, Paul, W. and Warschauer, D., Eds., New York: Wiley, 1963. Translated under the title Tverdye tela pod vysokim davleniem, Moscow: Inostrannaya Literatura, 1966.

  4. Murin, A.N., Khimiya nesovershennykh ionnykh kristallov (Chemistry of Imperfect Ionic Crystals), Leningrad: Leningr. Gos. Univ., 1975.

    Google Scholar 

  5. Samara, G.A., Solid State Physics: Advance Research and Application, Ehrenreich, H. and Furnbull, D., Eds., Orlando, USA, 1984.

  6. Pronkin, A.A., Evstrop'ev, K.K., Murin, I.V., and Veksler, G.I., On the Mechanism of Conduction in Alkali Aluminofluorophosphate Glasses, Fiz. Khim. Stekla, 1978, vol. 4, no. 2, pp. 235–238.

    Google Scholar 

  7. Hamann, S.D., The Influence of Pressure on Electrolytic Conduction in Alkali Silicate Glasses, Aust. J. Chem., 1965, vol. 15, no. 1, pp. 1–8.

    Google Scholar 

  8. Wutting, M. and Kim, Y.G., Inelasticity of a Mixed Alkali Silicate Glass at High Pressure, Phys. Chem. Glasses, 1971, vol. 12, no. 1, pp. 8–10.

    Google Scholar 

  9. Zhabrev, V.A., Moiseev, V.V., and Sigaev, V.N., Interrelation between Diffusion and Electrical Conduction in Sodium Silicate Glasses, Fiz. Khim. Stekla, 1975, vol. 1, no. 5, pp. 475–479.

    Google Scholar 

  10. Arai, K., Kumata, K., Kadota, K., et al., Pressure Effects on Electrical Conduction in Glass, J. Non-Cryst. Solids, 1973–1974, vol. 13, no. 1, pp. 131–139.

    Google Scholar 

  11. Sanditov, D.S. and Tsydypov, Sh.B., Viscosity and Free Volume of Inorganic Glasses, Fiz. Khim. Stekla, 1978, vol. 4, no. 1, pp. 75–83.

    Google Scholar 

  12. GOST (State Standard) 9450–76: Microhardness Measurements by Penetration of Diamond Indenters, 1976, Moscow: Standartizdat, 1978.

  13. Sokolov, I.A., Tarlakov, Yu.P., Murin, I.V., and Pronkin, A.A., Structural Role of Aluminum in the (0.8-x)LiF · xNaF-0.2Al(PO3)3 Glasses, Fiz. Khim. Stekla, 1999, vol. 25, no. 1, pp. 96–106 [Glass Phys. Chem. (Engl. transl.), 1999, vol. 25, no. 1, pp. 75–82].

    Google Scholar 

  14. Naraev, V.N., Il'in, A.A., Evstrop'ev, K.K., and Pronkin, A.A., Electrical Conductivity of Glasses in the NaPO3-NaF System under Hydrostatic Compression up to 600 MPa, Fiz. Khim. Stekla, 1982, vol. 8, no. 3, pp.–367–371.

    Google Scholar 

  15. Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes, New York: Princeton Univ., 1941. Translated under the title Teoriya absolyutnykh skorostei reaktsii, Moscow: Inostrannaya Literatura, 1948.

    Google Scholar 

  16. Myuller, R.L., Elektroprovodnost' stekloobraznykh veshchestv. Sbornik trudov (Electrical Conductivity of Vitreous Compounds: A Collection of Articles), Leningrad: Leningr. Gos. Univ., 1968.

    Google Scholar 

  17. Sanditov, D.S., Influence of the Mobility of Glass Network on the Electrical Conductivity and Glass Transition Temperature of Inorganic Glasses, Tezisy dokladov IV Vsesoyuznogo simpoziuma po elektricheskim svoistvam i stroeniyu stekla (Abstracts of Papers of IV All-Union Conference on Electrical Properties and Structure of Glasses), Yerevan, 1977, pp. 151–153.

  18. Sanditov, D.S., Barnev, G.M., and Tsydypov, Sh.B., Ultimate Strength and the Highest Destruction Rate of Silicate Glasses, Fiz. Khim. Stekla, 1978, vol. 4, no. 3, pp. 301–308.

    Google Scholar 

  19. Sanditov, D.S., On the Microhardness and Glass Transition Temperature of Inorganic Glasses, Fiz. Khim. Stekla, 1977, vol. 3, no. 1, pp. 14–19.

    Google Scholar 

  20. Sanditov, D.S. and Damdinov, D.G., Fluctuation Microhole Volume, Activation Volume of Viscous Flow, and Molar Volume of Alkali Silicate Glasses, Fiz. Khim. Stekla, 1980, vol. 6, no. 3, pp. 300–305.

    Google Scholar 

  21. Sanditov, D.S. and Kozlov, G.V., On the Nature of Fluctuation Holes in the Simplest Relaxation Model of Amorphous Polymers, Vysokomol. Soedin., Ser. A, 1996, vol. 38, no. 8, pp. 1–5.

    Google Scholar 

  22. Bartenev, G.M. and Sanditov, D.S., On the Mechanism of Influence of Alkali Metal Ions on the Glass Transition of Inorganic Glasses, Zh. Fiz. Khim., 1978, vol. 52, no. 4, pp. 883–886.

    Google Scholar 

  23. Sanditov, D.S., Microhardness and Some Mechanical and Thermal Characteristics of Noncrystalline Solids, Novoe v oblasti ispytanii na mikrotverdost' (Advances in the Field of Microhardness Testing), Moscow, 1974, pp.–236–241.

  24. Sanditov, D.S., Evaluation of the Fluctuation Microhole Volume in Silicate Glasses, Fiz. Khim. Stekla, 1977, vol. 3, no. 6, pp. 580–584.

    Google Scholar 

  25. Il'in, A.A., Physicochemical Properties of Glases Based on Aluminum and Barium Oxide Phosphate Compounds and Halides of Alkali and Alkaline-Earth Metals, Cand. Sci. (Chem.) Dissertation, Leningrad: Leningrad Technological Institute, 1980.

    Google Scholar 

  26. Likatov, Yu.S. and Privalov, V.P., Relation of the Free Volume to Molecular Parameters of Linear Polymers, Zh. Vysokomol. Soedin., Ser. A, 1973, vol. 15, no. 7, pp. 1517–1521.

    Google Scholar 

  27. Naraev, V.N. and Pronkin, A.A., A Study on the Nature of Current Carriers in the Na2O-P2O5 Glasses, Fiz. Khim. Stekla, 1998, vol. 24, no. 4, pp. 517–523 [Glass Phys. Chem. (Engl. transl.), 1998, vol. 24, no. 4, pp. 361–365].

    Google Scholar 

  28. Pronkin, A.A., Sokolov, I.A., Naraev, A.V., Loseva, M.N., and Naraev, V.N., Electrochemical Study of the Ionic Conductivity in Lithium Aluminofluorophosphate Glasses, Fiz. Khim. Stekla, 1996, vol. 22, no. 6, pp. 728–738 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 6, pp. 524–531].

    Google Scholar 

  29. Pronkin, A.A., Murin, I.V., Sokolov, I.A., Ustinov, Yu.N., and Loseva, M.N., Physicochemical Properties of Glasses in the Li2O-P2O5 System, Fiz. Khim. Stekla, 1997, vol. 23, no. 5, pp. 547–554 [Glass Phys. Chem. (Engl. transl.), 1997, vol. 23, no. 5, pp. 383–388].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, I.A., Il'in, A.A., Valova, N.A. et al. Investigation of the Mechanism of Charge Carrier Migration in Glasses of the Li2O–P2O5 and LiF–LiPO3 Systems. Glass Physics and Chemistry 29, 300–305 (2003). https://doi.org/10.1023/A:1024442301124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024442301124

Keywords

Navigation