Skip to main content
Log in

Ion dynamics in single and mixed former glasses: Correlation between microscopic lengths and network structure

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

We have investigated ion dynamics in several single and mixed former glasses in wide composition and temperature ranges. The ionic conductivity of these glasses depends strongly on the dopant salt content as well as on the mixed former ratio. The characteristic lengths for ion dynamics, such as mean square displacement and spatial extent of sub-diffusive motion of lithium ions, have been determined from the ac conductivity and dielectric spectra respectively. Ionic conductivity and the characteristic lengths have been correlated with the modification of the glass network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Yamauchi, A. Sakuda, A. Hayashi, M. Tatsumisago, J Power Sources 244, 707 (2013)

    Article  Google Scholar 

  2. P. Knauth, J Electron 5, 111 (2000)

    Google Scholar 

  3. B.J. Eggleton, B.L. Davies, K. Richardson, Nat Photonics 5, 141 (2011)

    Google Scholar 

  4. B. Deb, A. Ghosh, J Appl Phys 112, 094110 (2012)

    Article  Google Scholar 

  5. B. Deb, A. Ghosh, J Appl Phys 112, 024102 (2012)

    Article  Google Scholar 

  6. K. Funke, R.D. Banhatti, Solid State Ionics 177, 1551 (2006)

    Article  Google Scholar 

  7. M. Porto, P. Maass, M. Meyer, A. Bunde, W. Dieterich, Phys Rev B 61, 6057 (2000)

    Article  Google Scholar 

  8. A. Bunde, K. Funke, M.D. Ingram, Solid State Ionics 105, 1 (1998)

    Article  Google Scholar 

  9. K. Funke, R.D. Banhatti, S. Brückner, C. Cramer, D. Wilmer, Solid State Ionics 154–155, 65 (2002)

    Article  Google Scholar 

  10. G.N. Greaves, S. Sen, Adv Phys 56, 1 (2007)

    Article  Google Scholar 

  11. A. Sanson, F. Rocca, C. Armellini, G. Dalba, P. Fornasini, R. Grisenti, Phys Rev Lett 101, 155901 (2008)

    Article  Google Scholar 

  12. M. Tatsumisago, Y. Shinkuma, T. Minami, Nature (London) 354, 217 (1991)

    Article  Google Scholar 

  13. J.P. Malugani, R. Mercier, M. Tachez, Solid State Ionics 21, 131 (1986)

    Article  Google Scholar 

  14. D. Larink, H. Eckert, M. Reichert, S.W. Martin, J Phys Chem C 116, 26162 (2012)

    Article  Google Scholar 

  15. D. Zielniok, H. Eckert, C. Cramer, Phys Rev Lett 100, 035901 (2008)

    Article  Google Scholar 

  16. M. Schuch, C.R. Muller, P. Maass, S.W. Martin, Phys Rev Lett 102, 145902 (2009)

    Article  Google Scholar 

  17. B. Deb, A. Ghosh, EPL 97, 16001 (2012)

    Article  Google Scholar 

  18. A. Shaw, A. Ghosh, J Chem Phys 139, 114503 (2013)

    Article  Google Scholar 

  19. S. Kabi, A. Ghosh, Europhys Lett 100, 26007 (2012)

    Article  Google Scholar 

  20. A. Magistris, G. Chiodelli, M. Villa, J Power Sources 14, 87 (1985)

    Article  Google Scholar 

  21. A. Pradel, C. Rau, D. Bittencourt, P. Armand, E. Philippot, M. Ribes, Chem Mater 10, 2162 (1998)

    Article  Google Scholar 

  22. S. Ghosh, A. Ghosh, Phys Rev B 66, 132204 (2002)

    Article  Google Scholar 

  23. P. Maass, J Non-Cryst Solids 255, 35 (1999)

    Article  Google Scholar 

  24. C. Cramer, S. Brunklaus, E. Ratai, Y. Gao, Phys Rev Lett 91, 266601 (2003)

    Article  Google Scholar 

  25. C. Cramer, S. Bruckner, Y. Gao, K. Funke, Phys Chem Chem Phys 4, 3214 (2002)

    Article  Google Scholar 

  26. M. D. Ingram, J. E. Davidson, A. M. Coats, E. I. Kamitsos, and J. A. Kapoutsis, Glass Science and Technology-Glastechnische Berichte 73(89) (2000)

  27. B. Roling, C. Martiny, S. Bruckner, Phys Rev B 63, 214203 (2001)

    Article  Google Scholar 

  28. B. Roling, C. Martiny, K. Funke, J Non-Cryst Solids 249, 201 (1999)

    Article  Google Scholar 

  29. R. Kubo, J Phys Soc Jpn 12, 570 (1957)

    Article  Google Scholar 

  30. K. Funke, R.D. Banhatti, Solid State Ionics 169, 1 (2004)

    Article  Google Scholar 

  31. S.W. Martin, Solid State Ionics 51, 19 (1992)

    Article  Google Scholar 

  32. S. Bhattacharya, D. Dutta, A. Ghosh, Phys Rev B 73, 104201 (2006)

    Article  Google Scholar 

  33. J. Swenson, L. Börjesson, J Non-Cryst Solids 232–234, 658 (1998)

    Article  Google Scholar 

  34. T. Minami, J Non-Cryst Solids 73, 273 (1985)

    Article  Google Scholar 

  35. S. Kabi, A. Ghosh, Solid State Ionics 187, 39 (2011)

    Article  Google Scholar 

  36. R.G. Pearson, J Am Chem Soc 85, 3533 (1963)

    Article  Google Scholar 

  37. D. Larink, H. Eckert, M. Reichert, S.W. Martin, J Phys Chem C 116, 26162 (2012)

    Article  Google Scholar 

  38. J.C. Dyre, T.B. Schrøder, Rev Mod Phys 72, 873 (2000)

    Article  Google Scholar 

  39. K. Funke, R.D. Banhatti, D.M. Laughman, L.G. Badr, M. Mutke, A. Santic, W. Wrobel, E.M. Fellberg, C. Biermann, Z. Phys, Chem 224, 1891 (2010)

    Google Scholar 

  40. K. Meyer, J Non-Cryst Solids 209, 227 (1997)

    Article  Google Scholar 

  41. F. Gan, Y. Jiang, F. Jiang, J Non-Cryst Solids 52, 263 (1982)

    Article  Google Scholar 

  42. R. Iordanova, V. Dimitrov, Y. Dimitriev, D. Klissurski, J Non-Cryst Solids 180, 58 (1994)

    Article  Google Scholar 

  43. B. Deb, A. Ghosh, J Alloys Compd 509, 8251 (2011)

    Article  Google Scholar 

  44. S. Kabi, A. Ghosh, Solid State Ionics, http://dx.doi.org/10.1016/j.ssi.2013.09.028

  45. H. Doweidar, Y.B. Saddeek, J Non-Cryst Solids 355, 348 (2009)

    Article  Google Scholar 

  46. A. Kumar, S.B. Rai, D.K. Rai, Mater Res Bull 38, 333 (2003)

    Article  Google Scholar 

  47. Y.I. Hu, N.H. Liu, U.L. Lin, J Mater Sci 33, 229 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

Financial assistance for the work by the DST, Govt. of India (through grant no. SR/S2/CMP-0093/2010) is thankfully acknowledged. AS acknowledges CSIR, India for providing him with Research Fellowship (file no. 09/080(0704)/2010-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, A., Deb, B., Kabi, S. et al. Ion dynamics in single and mixed former glasses: Correlation between microscopic lengths and network structure. J Electroceram 34, 20–27 (2015). https://doi.org/10.1007/s10832-014-9932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9932-2

Keywords

Navigation