Skip to main content
Log in

Thermodynamic and kinetic parameters of elementary steps in gas-phase hydrolysis of SiF4. Quantum-chemical and FTIR spectroscopic studies

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The energies and thermodynamic parameters of elementary steps in the proposed mechanism of silicon tetrafluoride hydrolysis in the gas phase were calculated by the ab initio quantum-chemical method (MP4//MP2/6-311G(2d,2p)) and the density functional theory (B3LYP/6-311G(2d,2p)). The proposed mechanism of gas-phase hydrolysis involves the formation of mono- and dihydroxy derivatives, hexafluorodisiloxane (SiF3OSiF3), and linear and cyclic siloxane polymers with the chain length from three to six Si—O and difluorosilanone units. According to the calculations, all reactions considered are endothermic and are characterized by positive Gibbs free energies. The initial hydrolysis steps can be presented with a high accuracy by two parallel processes: formation of trifluorohydroxysilane (SiF3OH) and SiF3OSiF3. These are the most thermodynamically favorable among all reaction channels. The transition states of these elementary steps were found and their kinetic parameters were estimated (ΔG = 132 and 147 kJ mol–1, respectively). The calculation results were verified using FTIR spectroscopy of a mixture of gas-phase SiF4 and water vapor. The comparison of the theoretical (absolute) intensities of bands in the IR spectra and integral absorption coefficients in the experimental IR spectrum made it possible to calculate the equilibrium concentrations of the reactants and equilibrium constants of elementary steps of formation of SiF3OH and SiF3OSiF3, which agree with the theoretical values. The role of different derivatives in deep hydrolysis and possibilities of experimental detection of particular intermediates in the gas phase were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Devyatykh, A. D. Bulanov, A. V. Gusev, P. G. Sennikov, and A. M. Prokhorov, E. M. Dianov, Kh.-I. Pol´, Dokl. Akad. Nauk, 2001, 376, 492 [Dokl. Chem., 2001 (Engl. Transl.)].

    Google Scholar 

  2. V. O. Gel´mbol´dt and A. A. Ennan, Koord. Khim., 1983, 9, 579 [Russ. J. Coord. Chem., 1983, 9 (Engl. Transl.)].

    Google Scholar 

  3. W. D. Reents, Jr., D. L. Wood, and A. M. Muscle, Anal. Chem., 1965, 57, 104.

    Google Scholar 

  4. G. G. Devyatykh, D. A. Pryakhin, and A. D. Bulanov, Neorgan. Materialy, 2001, 37, 498 [Inorg. Mater., 2001, 37 (Engl. Transl.)].

    Google Scholar 

  5. A. V. Loginov and A. M. Garbar, Vysokochist. Veshchestva [High-Purity Substances], 1989, No. 5, 27 (in Russian).

  6. P. G. Sennikov, M. A. Ikrin, S. K. Ignatov, A. A. Bagatur´yants, and E. Yu. Klimov, Izv. Akad. Nauk, Ser. Khim., 1999, 92 [Russ. Chem. Bull., 1999, 48, 93 (Engl. Transl.)].

  7. M. F. Sviderskii, O. D. Khorozova, G. I. Dovganich, and V. A. Ivanova, Vysokochist. Veshchestva [High-Purity Substances], 1994, No. 1, 130 (in Russian).

  8. S. K. Ignatov, P. G. Sennikov, B. S. Ault, A. A. Bagatur´yants, A. A. Simdyanov, A. G. Razuvaev, E. Yu. Klimov, and O. Gropen, J. Phys. Chem., A, 1999, 103 (41), 8328.

    Google Scholar 

  9. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys., 1999, 110, 2822.

    Google Scholar 

  10. L. A. Curtiss, K. Raghavachari, and J. A. Pople, J. Chem. Phys., 1993, 98, 1293.

    Google Scholar 

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, GAUSSIAN-94, Revision D.1, Gaussian, Inc., Pittsburgh (PA), 1995.

    Google Scholar 

  12. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.

    Google Scholar 

  13. PC GAMESS home page: http://classic.chem.msu.su/gran/gamess/index.html.

  14. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCannn, R. P. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer, 1998, 60, 667.

    Google Scholar 

  15. M. W. Chase, J. Phys. Chem. Ref. Data, 1998, 9, 1.

    Google Scholar 

  16. B. S. Ault, J. Am. Chem. Soc., 1983, 105, 5742.

    Google Scholar 

  17. S. K. Ignatov, P. G. Sennikov, A. G. Razuvaev, and K. G. Tokhadze, Opt. Spektroskop., 2001, 90, 654 [Opt. Spectroscopy, 2001, 90 (Engl. Transl.)].

    Google Scholar 

  18. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume I, National Bureau of Standards, Washington (DC), 1972.

    Google Scholar 

  19. J. R. Durig, V. F. Kalasinsky, and M. J. Flanagan, Inorg. Chem., 1975, 14, 2839.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatov, S.K., Sennikov, P.G., Chuprov, L.A. et al. Thermodynamic and kinetic parameters of elementary steps in gas-phase hydrolysis of SiF4. Quantum-chemical and FTIR spectroscopic studies. Russian Chemical Bulletin 52, 837–845 (2003). https://doi.org/10.1023/A:1024431805512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024431805512

Navigation