Skip to main content
Log in

Computational benchmark for calculation of silane and siloxane thermochemistry

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Geometries of model chlorosilanes, R3SiCl, silanols, R3SiOH, and disiloxanes, (R3Si)2O, R = H, Me, as well as the thermochemistry of the reactions involving these species were modeled using 11 common density functionals in combination with five basis sets to examine the accuracy and applicability of various theoretical methods in organosilicon chemistry. As the model reactions, the proton affinities of silanols and siloxanes, hydrolysis of chlorosilanes and condensation of silanols to siloxanes were considered. As the reference values, experimental bonding parameters and reaction enthalpies were used wherever available. Where there are no experimental data, W1 and CBS-QB3 values were used instead. For the gas phase conditions, excellent agreement between theoretical CBS-QB3 and W1 and experimental thermochemical values was observed. All DFT methods also give acceptable values and the precision of various functionals used was comparable. No significant advantage of newer more advanced functionals over ‘classical’ B3LYP and PBEPBE ones was noted. The accuracy of the results was improved significantly when triple-zeta basis sets were used for energy calculations, instead of double-zeta ones. The accuracy of calculations for the reactions in water solution within the SCRF model was inferior compared to the gas phase. However, by careful estimation of corrections to the ΔHsolv and ΔGsolv of H+ and HCl, reasonable values of thermodynamic quantities for the discussed reactions can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cordero B, Gomez V, Platero-Prats AE, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S (2008) Covalent radii revisited. Dalton Trans 21:2832–2838. doi:10.1039/B801115J

    Article  CAS  Google Scholar 

  2. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767, see also http://www.webelements.com

  3. Grigoras S (1992) In: Bicerano J (ed) Modeling of polydimethylsiloxane. Dekker, New York, pp 161–190

    Google Scholar 

  4. Gibbs GV, Downs JW, Boisen MB Jr (1994) The elusive SiO bond. Rev Mineral Geochem 29:331–368

    CAS  Google Scholar 

  5. Gibbs GV, Downs RT, Cox DF, Ross NL, Prewitt CT, Rosso KM, Lippmann T, Kirfel A (2008) Bonded interactions and the crystal chemistry of minerals: a review. Z Kristallogr 223:1–40. doi:10.1524/zkri.2008.0002

    Article  CAS  Google Scholar 

  6. Gillespie RJ, Robinson EA (2005) Models of molecular geometry. Chem Soc Rev 34(5):396–407. doi:10.1039/B405359C

    Article  CAS  Google Scholar 

  7. Oberhammer H, Boggs JE (1980) Importance of (p-d)π bonding in the siloxane bond. J Am Chem Soc 102(24):7241–7244. doi:10.1021/ja00544a011

    Article  Google Scholar 

  8. Harrison WA (1978) Is silicon dioxide covalent or ionic? In: Pantelides ST (ed) The physics of SiO2 and its Interfaces. Pergamon, London, p 105

  9. Stewart RF, Whitehead MA, Donnay G (1980) The ionicity of the Si-O bond in low quartz. Am Mineral 65:324–326

    CAS  Google Scholar 

  10. Gibbs GV, Rosso KM, Teter DM, Boisen MB Jr, Bukowinski MST (1999) Model structures and properties of the electron density distribution for low quartz at pressure: a study of the SiO bond. J Mol Struct 485–486:13–25. doi:10.1016/S0022-2860(99)00179-9

    Article  Google Scholar 

  11. Pauling L (1980) The nature of silicon-oxygen bonds. Am Mineral 65:321–323

    CAS  Google Scholar 

  12. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  13. Almenningen A, Bastiansen O, Ewing V, Hedberg K, Trætteberg M (1963) The molecular structure of disiloxane, (SiH3)2O. Acta Chem Scand 17:2455–2460. doi:10.3891/acta.chem.scand.17-2455

    Article  CAS  Google Scholar 

  14. Ebsworth EAV (1968) Organometallic compounds of the group IV elements. Dekker, York New

    Google Scholar 

  15. Voronkov MG, Mileshkevich VP, Yuzhelevskii YA (1978) The siloxane bond. Plenum, New York

    Google Scholar 

  16. Apeloig Y (1989) Theoretical aspects of organosilicon compounds. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, Chichester, pp 57–227

    Chapter  Google Scholar 

  17. Cypryk M, Chojnowski J (2002) Silanones and metasilicates from negatively charged equivalent to SiO(−) and = SiO2 (2−) precursors. Theoretical study. J Organomet Chem 642(1–2):163–170

    Article  CAS  Google Scholar 

  18. Weinhold F, West R (2011) The nature of the silicon–oxygen bond. Organometallics 30(21):5815–5824. doi:10.1021/om200675d

    Article  CAS  Google Scholar 

  19. Weinhold F, West R (2013) Hyperconjugative interactions in permethylated siloxanes and ethers: the nature of the SiO bond. J Am Chem Soc 135:5762–5767. doi:10.1021/ja312222k

    Article  CAS  Google Scholar 

  20. Cypryk M, Apeloig Y (1997) Ab initio study of silyloxonium ions. Organometallics 16(26):5938–5949

    Article  CAS  Google Scholar 

  21. Walsh R (1989) Thermochemistry. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, Chichester, pp 371–392

    Chapter  Google Scholar 

  22. Chojnowski J, Cypryk M (2000) Synthesis of linear polysiloxanes. In: Jones RG, Ando W, Chojnowski J (eds) Silicon-containing polymers, the science and technology of their synthesis and applications, vol 1. Kluwer, Dordrecht, pp 3–41

    Google Scholar 

  23. Cypryk M (2007) In: DeJaeger R, Gleria M (eds) General Review on Polysiloxane Synthesis, vol 1. NOVA, New York, pp 1–59

    Google Scholar 

  24. Ring MA, O’Neal HE, Kadhim AH, Jappe F (1966) Heats of formation of chlorosilanes. J Organomet Chem 5:124–129

    Article  CAS  Google Scholar 

  25. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  27. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  29. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167. doi:10.1021/ar700111a

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101–194118. doi:10.1063/1.2370993

    Article  CAS  Google Scholar 

  32. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  33. Tsuneda T, Hirao K (2014) Long-range correction for density functional theory. WIREs Comput Mol Sci 4(4):375–390. doi:10.1002/wcms.1178

    Article  CAS  Google Scholar 

  34. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228. doi:10.1002/wcms.30

    Article  CAS  Google Scholar 

  35. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  Google Scholar 

  36. Swart M, Solà M, Bickelhaupt FM (2011) Inter- and intramolecular dispersion interactions. J Comput Chem 32(6):1117–1127. doi:10.1002/jcc.21693

    Article  CAS  Google Scholar 

  37. Song J-W, Tsuneda T, Sato T, Hirao K (2010) Calculations of alkane energies using long-range corrected DFT combined with intramolecular van der waals correlation. Org Lett 12(7):1440–1443. doi:10.1021/ol100082z

    Article  CAS  Google Scholar 

  38. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650. doi:10.1063/1.438955

    Article  CAS  Google Scholar 

  39. Rassolov VA, Ratner M, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22(9):976–984

    Article  CAS  Google Scholar 

  40. Lynch BJ, Zhao Y, Truhlar DG (2003) Effectiveness of diffuse basis functions for calculating relative energies by density functional theory. J Phys Chem A 107(9):1384–1388, http://comp.chem.umn.edu/basissets/basis.cgi

    Article  CAS  Google Scholar 

  41. Johnson ER, Contreras-García J, Yang W (2012) Density-functional errors in alkanes: a real-space perspective. J Chem Theory Comput 8:2676–2681. doi:10.1021/ct300412g

    Article  CAS  Google Scholar 

  42. Tielens F, De Proft F, Geerlings P (2001) Density functional theory study of the conformation and energetics of silanol and disiloxane. J Mol Struct Theochem 542:227–237

    Article  CAS  Google Scholar 

  43. Carteret C, Labrosse A, Assfeld X (2007) An ab initio and DFT study of structure and vibrational spectra of disiloxane H3SiOSiH3 conformers. Comparison to experimental data. Spectrochim Acta A 67:1421–1429. doi:10.1016/j.saa.2006.10.041

    Article  CAS  Google Scholar 

  44. Zhang Y, Li ZH, Truhlar DG (2007) Computational requirements for simulating the structures and proton activity of silicaceous materials. J Chem Theory Comput 3(2):593–604. doi:10.1021/ct6002884

    Article  CAS  Google Scholar 

  45. Al Derzi AR, Gregušová A, Runge K, Bartlett RJ (2008) Structure and properties of disiloxane: an ab initio and post-Hartree–Fock study. Int J Quantum Chem 108(12):2088–2096. doi:10.1002/qua.21720

    Article  CAS  Google Scholar 

  46. Scuseria GE (1992) Comparison of coupled-cluster results with a hybrid of Hartree–Fock and density functional theory. J Chem Phys 97(10):7528–7530

    Article  CAS  Google Scholar 

  47. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827. doi:10.1063/1.477924

    Article  CAS  Google Scholar 

  48. Martin JML, de Oliveira G (1999) Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J Chem Phys 111(5):1843–1856

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao ON, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S., Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox D (2009) Gaussian 09, Revision D.01. vol D.01. Gaussian, Inc., Wallingford CT

  50. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681

    Article  CAS  Google Scholar 

  51. Barrow MJ, Ebsworth EAV, Harding MM (1979) The crystal and molecular structures of disiloxane (at 108 K) and hexamethyldisiloxane (at 148 K). Acta Crystallogr B 35(9):2093–2099. doi:10.1107/S0567740879008529

    Article  Google Scholar 

  52. Borisenko KB, Rozsondai B, Hargittai I (1997) Molecular structure and intramolecular motion of hexamethyldisiloxane from gas-phase electron diffraction. J Mol Struct 406(1–2):137–144. doi:10.1016/S0022-2860(96)09609-3

    Article  CAS  Google Scholar 

  53. Smith JS, Borodin O, Smith GD (2004) A quantum chemistry based force field for poly(dimethylsiloxane). J Phys Chem B 108(52):20340–20350

    Article  CAS  Google Scholar 

  54. Koput J (1995) An ab initio study on the potential energy surface of large-amplitude motions for disiloxane. J Phys Chem 99(43):15874–15880. doi:10.1021/j100043a028

    Article  CAS  Google Scholar 

  55. Carteret C, Labrosse A (2010) Vibrational properties of polysiloxanes: from dimer to oligomers and polymers. 1. Structural and vibrational properties of hexamethyldisiloxane (CH3)3SiOSi(CH3)3. J Raman Spectrosc 41(9):996–1004. doi:10.1002/jrs.2537

    Article  CAS  Google Scholar 

  56. Passmore J, Rautiainen JM (2012) On the lower lewis basicity of siloxanes compared to ethers. Eur J Inorg Chem 2012(36):6002–6010. doi:10.1002/ejic.201200881

    Article  CAS  Google Scholar 

  57. Koput J (2000) The equilibrium structure and torsional potential energy function of methanol and silanol. J Phys Chem A 104(44):10017–10022

    Article  CAS  Google Scholar 

  58. Minkwitz R, Schneider S (1998) Die tieftemperaturkristallstruktur von trimethylsilanol (the low temperature crystal structure of trimethylsilanol). Z Naturforsch B Chem Sci 53(4):426–429

    Article  CAS  Google Scholar 

  59. Kewley R, McKinney PM, Robiette AG (1970) The microwave spectra and molecular structures of the silyl halides. J Mol Spectrosc 34(3):390–398. doi:10.1016/0022-2852(70)90022-6

    Article  CAS  Google Scholar 

  60. Merke I, Stahl W, Kassi S, Petitprez D, Wlodarczak G (2002) Internal rotation, quadrupole coupling, and structure of (CH3)3SiCl studied by microwave spectroscopy and ab initio calculation. J Mol Spectrosc 216(2):437–446. doi:10.1006/jmsp.2002.8632

    Article  CAS  Google Scholar 

  61. Iijima T, Shimoda T, Hattori H (1995) Molecular structure of chlorotrimethylsilane and methyltrichlorosilane as investigated by gas-phase electron diffraction. J Mol Struct 350(1):57–61. doi:10.1016/0022-2860(94)08466-U

    Article  CAS  Google Scholar 

  62. Montejo M, Partal Ureña F, Márquez F, Ignatyev IS, González JJL (2005) Vibrational spectrum of chlorotrimethylsilane. Spectrochim Acta A 62(1–3):293–301. doi:10.1016/j.saa.2004.12.04232

    Article  CAS  Google Scholar 

  63. CRC (2007) Handbook of Chemistry and Physics, 87th edn. Taylor and Francis, Boca Raton, FL

  64. Hunter EPL, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27(3):413–656

    Article  CAS  Google Scholar 

  65. Pedley JB, Iseard BS, Kirk A, Seilman S, Heath LG (1972) Computer analysis of thermochemical data: silicon compounds. CATCH tables. Sussex University, Brighton

    Google Scholar 

  66. Rimarčik J, Lukeš V, Klein E, Ilčin M (2010) Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Theochem 952:25–30. doi:10.1016/j.theochem.2010.04.002

    Article  CAS  Google Scholar 

  67. West R, Wilson LS, Powell DL (1979) Basicity of siloxanes, alkoxysilanes and ethers toward hydrogen bonding. J Organomet Chem 178(1):5–9. doi:10.1016/S0022-328X(00)87856-0

    Article  CAS  Google Scholar 

  68. Grabowsky S, Hesse MF, Paulmann C, Luger P, Beckmann J (2009) How to make the ionic Si-O bond more covalent and the Si-O-Si linkage a better acceptor for hydrogen bonding. Inorg Chem 48(10):4384–4393. doi:10.1021/ic900074r

    Article  CAS  Google Scholar 

  69. Mejías JA, Lago S (2000) Calculation of the absolute hydration enthalpy and free energy of H+ and OH. J Chem Phys 113(17):7306. doi:10.1063/1.1313793

    Article  Google Scholar 

  70. Camaioni DM, Schwerdtfeger CA (2005) Comment on “Accurate experimental values for the free energies of hydration of H+, OH, and H3O+”. J Phys Chem A 109(47):10795–10797

    Article  CAS  Google Scholar 

  71. Ignatyev IS, Montejo M, López González JJ (2013) An assessment of DFT methods for predicting the thermochemistry of ion-molecule reactions of group 14 elements (Si, Ge, Sn). J Mol Model 19:5439–5444. doi:10.1007/s00894-013-2038-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by PL-Grid Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Cypryk.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Optimized geometries of the discussed model silanes and Gibbs free energies for hydrolysis and condensation reactions obtained by CBS-QB3 and W1 calculations. (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cypryk, M., Gostyński, B. Computational benchmark for calculation of silane and siloxane thermochemistry. J Mol Model 22, 35 (2016). https://doi.org/10.1007/s00894-015-2900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2900-1

Keywords

Navigation