Skip to main content
Log in

Aggregation Stability of Aqueous Dispersions of Microcrystalline Cellulose: pH Dependence

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The aggregation stability of aqueous dispersions of microcrystalline cellulose (MCC) was studied by the flow ultramicroscopy in a wide range of pH (1–11). The calculations of the molecular and ion-electrostatic components of the interparticle interaction energy, which were performed according to the DLVO theory with and without allowance for the particle conductivity, demonstrated that, in most cases, the loss of the aggregation stability can not be explained without taking into account the concept of additional attraction forces between the MCC particles. It was assumed that such forces could be attributed to the dipole–dipole interactions or hydrogen bonding between hydrated particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cellulose and Cellulose Derivatives: Physico-Chemical Aspects and Industrial Applications, Kennedy, J.F., Phillips, G.O., Williams, P.C., and Piculele, L., Eds., Cambridge: Woodhead, 1995.

    Google Scholar 

  2. Khimiya drevesiny (Chemistry of Wood), Ivanov, M.A., Ed., Moscow: Lesnaya Promyshlennost', 1982.

    Google Scholar 

  3. Rogovin, Z.A. and Gal'braikh, L.S., Khimicheskie prevrashcheniya i modifikatsii tsellyulozy (Chemical Transformations and Modifications of Cellulose), Moscow: Khimiya, 1979.

    Google Scholar 

  4. Akbarov, Kh.I. and Tillaev, R.S., Khim. Prir. Soedin., 1999, Spec. issue, p. 58.

  5. Rashid Harum, A., Heinämäki, I., Antikainen, O., and Yliruusi, J., Drug Dev. Ind. Pharm., 1999, vol. 25, no. 5, p. 605.

    Google Scholar 

  6. Law, M.F.L. and Deasy Patrick, B., Eur. J. Pharm. Biopharm., 1998, vol. 45, no. 1, p. 57.

    Google Scholar 

  7. Terent'eva, E.P., Sharkov, V.V., Mel'chakova, N.A., et al., Sostoyanie i perspektivy razvitiya tekhnologii i oborudovaniya tsellulozno-bumazhnoi promyshlennosti (State of the Art and Horizons of Technology and Equipment Development in Pulp and Paper Industry), Leningrad: Leningr. Tekhnol. Inst. Tsellulozno-Bumazh. Prom-st., 1982, p. 123.

    Google Scholar 

  8. Khotimchenko, Yu.S. and Kropotov, A.V., Tikhookean. Med. Zh., 1999, no. 2, p. 84.

  9. Peleg, M. and Hollenbach, A.M., Food Technol. (Chicago), 1984, vol. 38, no. 3, p. 93.

    Google Scholar 

  10. Ayers, J.S., Petersen, M.J., Sheerin, B.E., and Bethell, G.S., J. Chromatogr., 1984, vol. 294, no. 2, p. 195.

    Google Scholar 

  11. Sidorova, M.P., Ermakova, L.E., Kotel'nikova, N.E., and Kudina, N.P., Kolloidn. Zh., 2001, vol. 63, no. 1, p. 106.

    Google Scholar 

  12. Yur'ev, V.I., Poverkhnostnye svoistva tsellyuloznykh voloknistykh materialov (Surface Properties of Cellulosic Fibrous Materials), St. Petersburg: Khimiya, 1996.

    Google Scholar 

  13. Jacobsons, E., Faitelson, L., Laka, M., and Chernavska, S., Rev. Fr. Lab., 1999, vol. 28, no. 312, p. 17.

    Google Scholar 

  14. Laka, M., Chernavska, S., Faitelson, L., and Jacobsons, E., Rev. Fr. Lab., 1999, vol. 28, no. 312, p. 351.

    Google Scholar 

  15. Paquot, M., Wiss. Technol., 1982, vol. 15, no. 3, p. 148.

    Google Scholar 

  16. Harrop, R., Phillips, G.O., Robb, I.D., and Williams, P.A., Prog. Food Nutr. Sci., 1982, vol. 6, no. 3, p. 331.

    Google Scholar 

  17. Philipp, B., Schleicher, H., and Loth, F., Papier, 1975, vol. 29, no. 12, p. 545.

    Google Scholar 

  18. Chernoberezhskii, Yu.M. and Golikova, E.V., Kolloidn. Zh., 1972, vol. 34, no. 5, p. 793.

    Google Scholar 

  19. Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, Amsterdam: Elsevier, 1948.

    Google Scholar 

  20. Hogg, R., Heally, T.W., and Fuerstenau, D.W., Trans. Faraday Soc., 1966, vol. 62, p. 1638.

    Google Scholar 

  21. Zhukov, A.N., Baturenko, D.Yu., Chernoberezhskii, Yu.M., and Lorentsson, A.V., Kolloidn. Zh., 2002, vol. 65, no. 3, p. 310.

  22. Schenkel, J.H. and Kitchener, J.A., Trans. Faraday Soc., 1960, vol. 62, p. 161.

    Google Scholar 

  23. Visser, I. and Israelashvily, J.N., Intermolecular and Surface Forces, London: Academic, 1985.

    Google Scholar 

  24. Visser, I., Adv. Colloid Interface Sci., 1972, vol. 3, no. 2, p. 331.

    Google Scholar 

  25. Efremov, I.F. Periodicheskie kolloidnye struktury (Periodic Colloidal Structures), Leningrad: Khimiya, 1971.

    Google Scholar 

  26. Lengyel, P. and Morvay, S., Chemie und Technologie der Zellstoffherstellung, Budapest, 1958.

  27. Clark, J., Tekhnologiya tsellyulozy (Cellulose Technology), Obolenskaya, A.V. and Pazukhina, G.A., Transl. Eds., Moscow: Lesnaya Promyshlennost', 1983.

    Google Scholar 

  28. Vinogradova, L.I., Mel'chakova, N.A., Sharkov, V.V., et al., Khimiya i tekhnologiya bumagi, Leningrad: LTA, 1983, p. 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernoberezhskii, Y.M., Baturenko, D.Y., Lorentsson, A.V. et al. Aggregation Stability of Aqueous Dispersions of Microcrystalline Cellulose: pH Dependence. Colloid Journal 65, 390–393 (2003). https://doi.org/10.1023/A:1024227411215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024227411215

Keywords

Navigation