Skip to main content
Log in

Flow cytometric monitoring of drug resistance in human tumor cells

  • Published:
Methods in Cell Science

Abstract

Recent studies have identified a family of glycoproteins which moulate cellular transport of antibiotics, alkaloids and drugs used in cancer chemotherapy. By facilitating efflux of drugs from the intracellular domain, these proteins reduce cytotoxicity and thus confer drug resistance. With the availability of antibodies raised against these phenotypic markers of drug resistance, immunohistochemistry and flow cytometry has been used to study their distribution and expression in normal and tumor cells. As some of the drugs used in cancer chemotherapy and other dyes which are substrates for this efflux pump are fluorescent, laser flow cytometry can be used for rapid quantitation of cellular retention, efflux and heterogeneity in drug transport of a tumor cell population. This method can also be used to screen drugs which may block efflux of a chemotherpeutic drug and thus increase chemosensitivity of a drug resistant tumor. In the present report flow cytometric methods for the study of drug transport and its modulation in tumor cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almquist KC, Loe DW, Hipfner DR et al. (1995). Characterization of the Mr 190,000 multidrug resistance protein (Mrp) in drug-selected and transfected human tumor cells. Cancer Res 55: 102-110.

    Google Scholar 

  2. Deeley RG, Cole SP (1997). Function, evolution and structure of multidrug resistance protein (MRP). Semin Cancer Biol 8: 193-204.

    Google Scholar 

  3. Doyle LA, Yang W, Abruzzo LV et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95: 15665-15670.

    Google Scholar 

  4. Frey T, Yue S, Haugland RP (1995). Dyes providing increased sensitivity in flow-cytometric dye-efflux assays for multidrug resistance. Cytometry 20: 218-227.

    Google Scholar 

  5. Ganapathi R, Grabowski D, Rouse W et al. (1981). Differential effect of the calmodulin inhibitor trifluoperazine on cellular accumulation, retention, and cytotoxicity of anthracyclines in doxorubicin (adriamycin)-resistant P388 mouse leukemia cells. Cancer Res 44: 5056-5061.

    Google Scholar 

  6. Hollo Z, Homolya L, Davis CW et al. (1994). Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim Biophys Acta 1191: 384-388.

    Google Scholar 

  7. Izquierdo M, Scheffer G, Flens M et al. (1996). Broad distribution of the multidrug resistance-related vault lung protein in normal human tissues and tumors. Am J Pathol 148: 877-887.

    Google Scholar 

  8. Juliano RL, Ling V (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455: 152-162.

    Google Scholar 

  9. Krishan A (1987). Effect of drug efflux blockers on vital staining of cellular DNA with Hoechst 33341. Cytometry 8: 642-645.

    Google Scholar 

  10. Krishan A (2001). Monitoring of cellular resistance to cancer chemotherapy: drug retention and efflux. Methods Cell Biology 64: 193-209.

    Google Scholar 

  11. Krishan A, Fitz MC, Andritsch I (1997). Drug retention, efflux and resistance in tumor cells. Cytometry 29: 279-285.

    Google Scholar 

  12. Krishan A, Ganapathi R (1980). Laser flow cytometric studies on the intracellular fluorescence of anthracyclines. Cancer Res 40: 3895-3900.

    Google Scholar 

  13. Krishan A, Sauerteig A, Andritsch I, and Wellham L (1997). Flow cytometric analysis of the multiple drug resistance phenotype. Leukemia 11: 1138-1146.

    Google Scholar 

  14. Krishan A, Sauerteig A, Wellham L (1985). Flow cytometric studies on modulation of cellular adriamycin retention by phenothiazines. Cancer Res 45: 1046-1051.

    Google Scholar 

  15. Krishan A, Sridhar KS, Davila E et al. (1987). Patterns of anthracycline retention modulation in human tumor cells. Cytometry 8: 306-314.

    Google Scholar 

  16. Kunikane H, Zalupski MM, Ramachandran C et al. (1997). Flow cytometric analysis of P-glycoprotein expression and drug efflux in human soft tissue and bone sarcomas. Cytometry 30: 197-203.

    Google Scholar 

  17. Lampidis T, Munck J, Krishan A et al. (1985). Reversal of resistance to rhodamine 123 in adriamycin-resistant Friend leukemia cells. Cancer Res 45: 2626-2631.

    Google Scholar 

  18. Leith CP, Kopecky KJ, Chen IM (1999). Frequency and clinical significance of the expression of multi drug resistance proteins MDR1/P-gp, MRP1, and LRP in acute myeloid leukemia. A Southwest Oncology Group study. Blood 94: 1086-1099.

    Google Scholar 

  19. Lelong EH, Guzikowski AP, Haugland RP et al. (1991). Fluorescent verapamil derivative for monitoring activity of the multidrug transporter. Mol Pharmacol 40: 490-494.

    Google Scholar 

  20. Ling V (1992). P-glycoprotein and resistance to anti-cancer drugs. Cancer 69: 2603-2609.

    Google Scholar 

  21. Nair S, Singh SV, Samy TSA et al. (1990). Anthracycline resistance in murine leukemic P388 cells: Role of drug efflux and glutathione related enzymes. Biochemical Pharmacol 39: 723-728.

    Google Scholar 

  22. Ross DD, Gao Y, Yang W et al. (1997). The 95-kilodalton membrane glycoprotein overexpressed in novel multidrug resistant breast cancer cells is NCA, the nonspecific cross-reacting antigen of carcinoembryonic antigen. Cancer Res 57: 5460-5464.

    Google Scholar 

  23. Scheffer GL, Wijngaard PLJ, Flens MJ et al. (1995). The drug resistance related protein LRP is the human major vault protein. Nat Med 1: 578-582.

    Google Scholar 

  24. Sikic BI, Fisher GA, Lum BL et al. (1997). Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 40: Suppl S13-S19.

    Google Scholar 

  25. Slater LM, Sweet P, Stupecky M et al. (1986). Cyclosporin A corrects daunorubicin resistance in Ehrlich ascites carcinoma. Br J Cancer 54: 235-238.

    Google Scholar 

  26. Tsuruo T, Iida H, Tsukagoshi S et al. (1981). Overcoming of vincristine resistance in P388 leukemia in vivoand in vitrothrough enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41: 1967-1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishan, A. Flow cytometric monitoring of drug resistance in human tumor cells. Methods Cell Sci 24, 55–60 (2002). https://doi.org/10.1023/A:1024185612997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024185612997

Navigation