Skip to main content
Log in

Gravitation as Anholonomy

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A gravitational field can be seen as the anholonomy of the tetrad fields. This is more explicit in the teleparallel approach, in which the gravitational field-strength is the torsion of the ensuing Weitzenböck connection. In a tetrad frame, that torsion is just the anholonomy of that frame. The infinitely many tetrad fields taking the Lorentz metric into a given Riemannian metric differ by point-dependent Lorentz transformations. Inertial frames constitute a smaller infinity of them, differing by fixed-point Lorentz transformations. Holonomic tetrads take the Lorentz metric into itself, and correspond to Minkowski flat spacetime. An accelerated frame is necessarily anholonomic and sees the electromagnetic field strength with an additional term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Synge, J. L. (1960). Relativity: The General Theory, Wiley, New York.

    Google Scholar 

  2. Kobayashi, S. and Nomizu, K. (1996). Foundations of Differential Geometry, 2nd ed., Interscience, New York.

    Google Scholar 

  3. Hayashi, K. and Shirafuji, T. (1979). Phys. Rev. D 19, 3524.

    Google Scholar 

  4. For a general review on the gauge approach to gravitation, see Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne'emann, Y. (1995). Phys. Rep. 258, 1, and references therein.

    Google Scholar 

  5. de Andrade, V. C. and Pereira, J. G. (1997). Phys. Rev. D 56, 4689.

    Google Scholar 

  6. See, for example, Aldrovandi, R. and Pereira, J. G. (1995). An Introduction to Geometrical Physics, World Scientific, Singapore.

    Google Scholar 

  7. Dirac, P. A. M. (1958). In Planck Festschrift, W. Frank (Ed.), Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  8. Iliev, B. Z. (1998). J. Geom. Phys. 24, 209.

    Google Scholar 

  9. Iliev, B. Z. (1996). J. Phys. A 29, 6895

    Google Scholar 

  10. Iliev, B. Z. (1997). J. Phys. A 30, 4327

    Google Scholar 

  11. Iliev, B. Z. (1998). J. Phys. A 31, 1287.

    Google Scholar 

  12. Hartley, D. (1995). Class. Quantum Grav. 12, L103.

    Google Scholar 

  13. Iliev, B. Z. (1998). Normal frames and linear transport along paths in vector bundles (gr-qc/9809084)

  14. Iliev, B. Z. (2003). J. Geom. Phys. 45, 24(hep-th/0110194).

    Google Scholar 

  15. Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.

    Google Scholar 

  16. Ellis, G. F. R. (1990). Standard and Inflationary Cosmologies, Lectures at the Summer Research Institute on Gravitation, Banff Centre, Banff, Alberta, Canada, August 12–25, 1990, SISSA-Trieste preprint 1990.

    Google Scholar 

  17. Ellis, G. F. R., and van Elst, H. (1998). Cosmological Models, Cargése Lectures 1998 (gr-qc/9812046).

  18. Aldrovandi, R., Barros, P. B., and Pereira, J. G. (in press). Found. Phys. (gr-qc/0212034).

  19. See, for instance, Fock, V. (1929). Z. Physik 57, 261.

    Google Scholar 

  20. de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2001). Phys. Rev. D 64, 027502.

    Google Scholar 

  21. Chandrasekhar, S. (1992). The Mathematical Theory of Black Holes, Oxford University Press, Oxford.

    Google Scholar 

  22. Landau, L. and Lifshitz, E. (1989). Théorie des Champs, 4th Edition, MIR, Moscow.

    Google Scholar 

  23. See, for example, Kibble, T. W. B. (1965). In Seminar on High–Energy Physics and Elementary Particles, by C. Fronsdal and A. Salam (Ed.), Int. Atomic Energy Agency, Vienna.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldrovandi, R., Barros, P.B. & Pereira, J.G. Gravitation as Anholonomy. General Relativity and Gravitation 35, 991–1005 (2003). https://doi.org/10.1023/A:1024060732690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024060732690

Navigation