Skip to main content
Log in

Dielectric Properties and Phase Transition Behavior of xPMN-(1 − x)PZT Ceramic Systems

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The dielectric properties and phase transition behavior of the pseudo-ternary xPb(Mg1/3Nb2/3)O3-(1 − x)Pb(Zr,Ti)O3 solid solution system were investigated as a function of the Pb(Mg1/3Nb2/3)O3 (PMN) content and Ti/Zr ratio for selected compositions. The investigations have demonstrated a general trend in broadening of the phase transition and increasing diffusivity with increasing PMN content. For the morphotropic phase boundary (MPB) compositions, the dielectric permittivity maximum, its temperature (T m) and the Curie-Weiss constant were found to decrease with increasing Mg1/3Nb2/3 concentration. When a Ti/Zr ratio was constant and equal to 53/47, temperature-dependent investigations demonstrated that the dielectric parameters involved in a modified Curie-Weiss law increase monotonically with increasing PMN content and T m moves toward room temperature with average rate of ≈ −4.1°C/mol% as well. A phase transition in 0.5PMN-0.5Pb(Zr0.47Ti0.53)O3 and 0.25PMN-0.75Pb(Zr0.60Ti0.40)O3 ceramic systems exhibited a diffused behavior with a characteristic frequency dependence of T m. From pyroelectric measurement, an unusual spontaneous polarization behavior at about 215 K is reported for some MPB compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lin, D.C. van Aken, and W. Huebner, J. Am. Ceram. Soc., 82, 2698 (1999).

    Google Scholar 

  2. L.E. Cross, Ferroelectrics, 76, 241 (1987).

    Google Scholar 

  3. R. Pirc and R. Blinc, Phys. Rev. B, 60, 13470 (1999).

    Google Scholar 

  4. K. Fan, L. Kong, L. Zhang, and X. Yao, J. Mat. Sc., 34, 6143 (1999).

    Google Scholar 

  5. K. Uchino, Solid State Ionics, 108, 43 (1998).

    Google Scholar 

  6. Y. Chen, S. Hirose, D. Viehland, S. Takahashi, and K. Uchino, Jpn. J. Appl. Phys., 39, Part 1, No. 8, 4843 (2000).

    Google Scholar 

  7. X. Zhu and Z. Meng, J. Mat. Sc., 31, 2171 (1996).

    Google Scholar 

  8. K.V. Im and W.K. Choo, Jpn. J. Appl. Phys., 36, Part 1, No. 9B, 5989 (1997).

    Google Scholar 

  9. K. Fujishiro, T. Iwase, Y. Uesu, Y. Yamada, B. Dkhil, J. Kiat, S. Mori, and N. Yamamoto, J. Phys. Soc. Japan, 69, 2331 (2000).

    Google Scholar 

  10. Z. Xu, S.M. Gupta, and D. Viehland, J. Am. Ceram. Soc., 83, 181 (2000).

    Google Scholar 

  11. H.T. Martirena and J.C. Burfoot, Ferroelectrics, 7, 151 (1974).

    Google Scholar 

  12. A. Levstik, Z. Kutnjak, C. Filipič, and R. Pirc, Phys. Rev. B, 57, 11204 (1998).

    Google Scholar 

  13. M. Yokosuka, Jpn. J. Appl. Phys., 37, Part 1, No. 9B, 5257 (1998).

    Google Scholar 

  14. H. Ouchi, K. Nagano, and S. Hayakawa, J. Am. Ceram. Soc., 48, T26 (1965).

  15. Y. Abe, K. Kakegawa, and Y. Sasaki, Nippon Kagaku Kaishi, 10, 671 (1999).

    Google Scholar 

  16. A.V. Shilnikov, A.V. Sopit, A.I. Burkhanov, and A.G. Luchaninov, J. European Cer. Soc., 19, 1295 (1999).

    Google Scholar 

  17. S.L. Swartz and T.R. Shrout, Mat. Res. Bull., 17, 1245 (1982).

    Google Scholar 

  18. N. Cereceda, B. Noheda, and J.A. Gonzalo, J. European Cer. Soc., 19, 1201 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koval, V., Alemany, C., Briančin, J. et al. Dielectric Properties and Phase Transition Behavior of xPMN-(1 − x)PZT Ceramic Systems. Journal of Electroceramics 10, 19–29 (2003). https://doi.org/10.1023/A:1024023823871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024023823871

Navigation