Skip to main content
Log in

Surface Impedance Tensors of Textured Polycrystals

  • Published:
Journal of elasticity and the physical science of solids Aims and scope Submit manuscript

Abstract

A formula for the surface impedance tensors of orthorhombic aggregates of cubic crystallites is given explicitly in terms of the material constants and the texture coefficients. The surface impedance tensor is a Hermitian second-order tensor which, for a homogeneous elastic half-space, maps the displacements given at the surface to the tractions needed to sustain them. This tensor plays a fundamental role in Stroh's formalism for anisotropic elasticity. In this paper we account for the effects of crystallographic texture only up to terms linear in the texture coefficients and give an explicit formula for the terms in the surface impedance tensor up to those linear in the texture coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Bacon, D.M. Barnett and R.O. Scattergood, Anisotropic continuum theory of lattice defects. Prog. Mater. Sci. 23 (1978) 51–262.

    Article  ADS  Google Scholar 

  2. D.M. Barnett, The precise evaluation of derivatives of the anisotropic elastic Green's functions. Phys. Stat. Sol. (b) 49 (1972) 741–748.

    Google Scholar 

  3. D.M. Barnett and J. Lothe, Synthesis of the sextic and the integral formalism for dislocations, Green's functions, and surface waves in anisotropic elastic solids. Phys. Norv. 7 (1973) 13–19.

    Google Scholar 

  4. D.M. Barnett and J. Lothe, Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method. Proc. Roy. Soc. London A 402 (1985) 135–152.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. D.M. Barnett and L.A. Swanger, The elastic energy of a straight dislocation in an infinite anisotropic elastic medium. Phys. Stat. Sol. (b) 48 (1971) 419–428.

    Google Scholar 

  6. H.J. Bunge. Texture Analysis in Materials Science. Butterworth's, London (1982).

    Google Scholar 

  7. P. Chadwick and G.D. Smith, Foundations of the theory of surface waves in anisotropic elastic materials. Adv. Appl. Mech. 17 (1977) 303–376.

    Article  MATH  Google Scholar 

  8. I.M. Gel'fand and G.E. Shilov, Generalized Functions, Vol. 1: Properties and Operations. Academic Press, New York and London (1964).

    Google Scholar 

  9. M. Huang, A statistical continuum theory on constitutive relations of elastic polycrystals. Doctoral dissertation. University of Kentucky, Lexington, USA (2002).

    Google Scholar 

  10. J. Lothe and D.M. Barnett, On the existence of surface-wave solutions for anisotropic elastic half-spaces with free surface. J. Appl. Phys. 47 (1976) 428–433.

    Article  ADS  Google Scholar 

  11. C.-S. Man, On the constitutive equations of some weakly-textured materials. Arch. Rational Mech. Anal. 143 (1998) 77–103.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. C.-S. Man, Material tensors of weakly-textured polycrystals. In: Chien Wei-zang et al. (eds), Proceedings of the Third International Conference on Nonlinear Mechanics. Shanghai Univ. Press, Shanghai (1998) pp. 87–94.

    Google Scholar 

  13. G. Nakamura, Existence and propagation of Rayleigh waves and pulses. In: J.J. Wu, T.C.T. Ting and D.M. Barnett (eds), Modern Theory of Anisotropic Elasticity and Applications. SIAM Proceedings. SIAM, Philadelphia (1991) pp. 215–231.

    Google Scholar 

  14. G. Nakamura and K. Tanuma, A nonuniqueness theorem for an inverse boundary value problem in elasticity. SIAM J. Appl. Math. 56 (1996) 602–610.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Nakamura and K. Tanuma, A formula for the fundamental solution of anisotropic elasticity. Quart. J. Mech. Appl. Math. 50 (1997) 179–194.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Nakamura and K. Tanuma, Reconstruction of elastic tensor of anisotropic elasticity at the boundary from the localized Dirichlet to Neumann map. Preprint.

  17. G. Nakamura, K. Tanuma and G. Uhlmann, Layer stripping for a transversely isotropic elastic medium. SIAM J. Appl. Math. 59 (1999) 1879–1891.

    MATH  MathSciNet  Google Scholar 

  18. G. Nakamura and G. Uhlmann, Inverse problems at the boundary for an elastic medium. SIAM J. Math. Anal. 26 (1995) 263–279.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Paroni and C.-S. Man, Constitutive equations of elastic polycrystalline materials. Arch. Rational Mech. Anal. 150 (1999) 153–177.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. R.-J. Roe, Description of crystallite orientation in polycrystalline materials III: General solution to pole figure inversion. J. Appl. Phys. 36 (1965) 2024–2032.

    Article  ADS  Google Scholar 

  21. J.L. Synge, The Hypercircle in Mathematical Physics, Cambridge Univ. Press, London (1957).

    MATH  Google Scholar 

  22. K. Tanuma, Surface impedance tensors of transversely isotropic elastic materials. Quart. J. Mech. Appl. Math. 49 (1996) 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  23. T.C.T. Ting, Anisotropic Elasticity. Oxford Univ. Press, New York (1996).

    MATH  Google Scholar 

  24. J.R. Willis, The interaction of gas bubbles in an anisotropic elastic solid. J. Mech. Phys. Solids 23 (1975) 129–138.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Sing Man.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanuma, K., Man, CS., Huang, M. et al. Surface Impedance Tensors of Textured Polycrystals. Journal of Elasticity 67, 131–147 (2002). https://doi.org/10.1023/A:1023997104067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023997104067

Navigation