Skip to main content
Log in

Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various stress situations such as salt stress and high light intensities. Here, the light regulation of Haematococcus carotenoid biosynthesis was examined. Isolation and characterization of the lycopene β cyclase gene involved in carotenoid biosynthesis was carried out using a functional complementation approach. Subsequently, gene expression of lycopene cyclase, phytoene synthase, phytoene desaturase and carotenoid hydroxylase was analysed in green flagellate cells. All four genes revealed higher transcript levels in response to increased illumination. Not only the induction of astaxanthin biosynthesis but also carotenoid gene expression was found to be correlated with the redox state of the photosynthetic electron transport. In accordance with this result, increased transcript levels for carotenoid biosynthesis genes were detected under both blue and red light conditions. The application of different inhibitors of the photosynthetic electron flow indicated that the photosynthetic plastoquinone pool functions as the redox sensor for the up-regulation of carotenoid biosynthesis genes. These results suggested that in Haematococcus not only the specific astaxanthin pathway but also general carotenoid biosynthesis is subject to photosynthetic redox control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J.F., Alexciev, K. and Hakansson, G. 1995. Photosynthesis. Regulation by redox signalling. Curr. Biol. 5: 869–872.

    Google Scholar 

  • Allen, J.F. and Pfannschmidt, T. 2000. Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Phil. Trans. R. Soc. Lond. B 355: 1351–1357.

    Google Scholar 

  • Böger, P., Sandmann, G. and Miller, R. 1981. Herbicide resitance in a mutant of the microalga Bummilleriopsisi filiformis. Photosynth. Res. 2: 61–74.

    Google Scholar 

  • Bohne, F. and Linden, H. 2002. Regulation of carotenoid biosynthesis in response to light in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1579: 26–34.

    Google Scholar 

  • Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant. 108: 111–117.

    Google Scholar 

  • Boussiba, S., Fan, L. and Vonshak, A. 1992. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Meth. Enzymol. 213: 386–391.

    Google Scholar 

  • Breitenbach, J., Misawa, N., Kajiwara, S. and Sandmann, G. 1996. Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol. Lett. 140: 241–246.

    Google Scholar 

  • Cunningham, F.X. and Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 557–583.

    Google Scholar 

  • Cunningham, F.X., Pogson, B., Sun, Z., McDonald, K.A., DellaPenna, D. and Gantt, E. 1996. Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8: 1613–1626.

    Google Scholar 

  • Davies, B.H. 1976. Carotenoids. In: T.W. Goodwin (Ed.) Chemistry and Biochemistry of Plant Pigments, Academic Press, London, pp. 38–165.

    Google Scholar 

  • Demmig-Adams, B., Gilmore, A.M. and Adams, W.W. 1996. In vivo functions of carotenoids in higher plants. FASEB J. 10: 403–412.

    Google Scholar 

  • Dixon, M. and Webb, E.C. 1979. Enzymes. Academic Press, New York.

    Google Scholar 

  • El Bissati, K. and Kirilovsky, D. 2001. Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism. Plant Physiol. 125: 1988–2000.

    Google Scholar 

  • Emanuelssen, Nielsen, H. and von Heijne, G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8: 978–984.

    Google Scholar 

  • Escoubas, J.M., Lomas, M., LaRoche, J. and Falkowski, P.G. 1995. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc. Natl. Acad. Sci. USA 92: 10237–10241.

    Google Scholar 

  • Fabregas, J., Dominguez, A., Regueiro, M., Maseda, A. and Otero, A. 2000. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 53: 530–535.

    Google Scholar 

  • Fan, L., Vonshak, A., Gabbay, R., Hirschberg, J., Cohen, Z. and Boussiba, S. 1995. The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with dephenylamine. Plant Cell Physiol. 36: 1519–1524.

    Google Scholar 

  • Fan, L., Vonshak, A., Zarka, A. and Boussiba, S. 1998. Does astaxanthin protect Haematococcus against light damage? Z. Naturforsch. 53: 93–100.

    Google Scholar 

  • Fraser, P.D., Shimada, H. and Misawa, N. 1998. Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay. Eur. J. Biochem. 252: 229–236.

    Google Scholar 

  • Goodwin, T.W. 1980. The Biochemistry of Carotenoids. Chapman-Hall, New York.

    Google Scholar 

  • Holden, H. 1976. Chlorophylls. In: T.W. Goodwin (Ed.) Chemistry and Biochemistry of Plant Pigments, Academic Press, New York, vol. 2, pp. 1–37.

    Google Scholar 

  • Humbeck, K., Hoffmann, B. and Senger, H. 1988. Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus. Planta 173: 205–212.

    Google Scholar 

  • Grünewald, K., Hagen, C. and Braune, W. 1997. Secondary carotenoid accumulation in flagellates of the green alga Haematococcus lacustris. Eur. J. Phycol. 32: 387–392.

    Google Scholar 

  • Grünewald, K., Eckert, M., Hirschberg, J. and Hagen, C. 2000. Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol. 122: 1261–1268.

    Google Scholar 

  • Grünewald, K., Hirschberg, J. and Hagen, C. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276: 6023–6029.

    Google Scholar 

  • Hirschberg, J. 2001. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant. Biol. 4: 210–218.

    Google Scholar 

  • Johnson, E.A. and Schroeder, W.A. 1995. Microbial carotenoids. Adv. Biochem. Eng. Biotechnol. 53: 119–178.

    Google Scholar 

  • Kobayashi, M., Kakizono, T., Nishio, N. and Nagai, S. 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61–63.

    Google Scholar 

  • Kobayashi, M., Kakizono, T. and Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867–873.

    Google Scholar 

  • Kobayashi, M., Kurimura, Y., Kakizono, T., Nishio, N. and Tsuji, Y. 1997. Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 84: 94–97.

    Google Scholar 

  • Kovacs, L., Wiessner, W., Kis, M., Nagy, F., Mende, D. and Demeter, S. 2000. Short-and long-term redox regulation of photosynthetic light energy distribution and photosystem stoichoimetry by acetate metabolism in the green alga, Chlamydobotrys stellata. Photosynth. Res. 65: 231–247.

    Google Scholar 

  • Kujat, S.L. and Owttrim, G.W. 2000. Redox-regulated RNA helicase expression. Plant Physiol. 124: 703–714.

    Google Scholar 

  • Lang, N.J. 1968. Electron microscopic studies of extraplastidic astaxanthin in Haematococcus. J. Phycol. 4: 12–19.

    Google Scholar 

  • Linden, H. 1999. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim. Biophys. Acta 1446: 203–212.

    Google Scholar 

  • Linden, H., Misawa, N., Chamovitz, D., Pecker, I., Hirschberg, J. and Sandmann, G. 1991. Functional complementation in Escherichia coli of different phytoene desaturase genes and analysis of accumulated carotenes. Z. Naturforsch. [C] 46: 1045–1051.

    Google Scholar 

  • Linden, H., Vioque, A. and Sandmann, G. 1993. Isolation of a carotenoid biosynthesis gene coding for ζ-carotene desaturase from Anabaena PCC 7120 by heterologous complementation. FEMS Microbiol. Lett. 106: 99–104.

    Google Scholar 

  • Lorenz, R.T. and Cysewski, G.R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160–167.

    Google Scholar 

  • Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S., Saito, T., Ohtani, T. and Miki, W. 1995. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J. Bact. 177: 6575–6584.

    Google Scholar 

  • Pfannschmidt, T., Nilsson, A. and Allen, J.F. 1999. Photosynthetic control of chloroplast gene expression. Nature 397: 625–628.

    Google Scholar 

  • Pfannschmidt, T., Allen, J.F. and Oelmuller, R. 2001a. Principles of redox control in photosynthesis gene expression. Physiol. Plant. 112: 1–9.

    Google Scholar 

  • Pfannschmidt, T., Schütze, K., Brost, M. and Oelmüller, R. 2001b. A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J. Biol. Chem. 276: 36125–36130.

    Google Scholar 

  • Scheibe, R. 1991. Redox-modulation of chloroplast enzymes. Plant Physiol. 96: 1–3.

    Google Scholar 

  • Sokolowsky, V., Kaldenhoff, R., Ricci, M. and Russo, V.E.A. 1990. Fast and reliable mini-prep RNA extraction from Neurospora crassa. Fungal Genet. Newsl. 37: 41–43.

    Google Scholar 

  • Steinbrenner, J. and Linden, H. 2000. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin biosynthesis in the green alga Haematococcus pluvialis. Plant Physiol. 125: 810–817.

    Google Scholar 

  • Sun, Z., Cunningham, F.X. and Gantt, E. 1998. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc. Natl. Acad. Sci. USA 95: 11482–11488.

    Google Scholar 

  • Trebst, A. 1980. Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. Meth. Enzymol. 69: 675–715.

    Google Scholar 

  • Tullberg, A., Alexciev, K., Pfannschmidt, T. and Allen, J.F. 2000. Photosynthetic electron flow regulates transcription of the psaB gene in pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool. Plant Cell Physiol. 41: 1045–1054.

    Google Scholar 

  • von Lintig, J., Welsch, R., Bonk, M., Giuliano, G., Batschauer, A. and Kleinig, H. 1997. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J. 12: 625–634.

    Google Scholar 

  • Wild, A. 1979. Physiolgy of photosynthesis in higher plants. The adaptation to light intensity and light quality. Ber. Deut. Bot. Ges. 92: 341–364.

    Google Scholar 

  • Yang, D.-H., Andersson, B., Aro, E.-M. and Ohad, I. 2001. The redox stat of the plastoquinone pool controls the level of the lightharvesting chlorophyll a/b binding protein complex II (LHC II) during photoacclimation. Photosynth. Res. 68: 163–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Linden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbrenner, J., Linden, H. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52, 343–356 (2003). https://doi.org/10.1023/A:1023948929665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023948929665

Navigation