Skip to main content
Log in

Characterization of a PttRPS18 promoter active in the vascular cambium region of hybrid aspen

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

By screening 273 hybrid aspen plants transformed with a luciferase-based promoter trap T-DNA vector, one plant was found in which the reporter gene (luxF2) was activated only in cells of the cambial region, i.e., vascular cambium, phloem and differentiating xylem. Southern blot analysis revealed that this plant denoted #24 had a single T-DNA insert. The chromosomal regions flanking the T-DNA were cloned by plasmid rescue. A 757 bp DNA fragment, originating from the rescued plasmid and covering the genomic region immediately upstream from the right-border sequence of the T-DNA, was used as a probe to isolate the corresponding chromosomal region from a wild-type hybrid aspen genomic library. A hybrid aspen small ribosomal protein gene, PttRPS18, was then isolated. By screening a wt cambial region-specific cDNA library, two cDNA clones encoding a putative 152 amino acid PttRPS18 protein were isolated. Comparison of the DNA sequence immediately flanking the T-DNA insert in #24 with the corresponding wild-type sequence showed that only a minor deletion occurred during the T-DNA integration. Northern analysis revealed that the PttRPS18 gene was expressed mainly in the cambial region. By RT-PCR and DNA sequencing analysis, the exact structures of the PttRPS18 and luxF2 transcripts were determined. Finally, the hybrid aspen PttRPS18 promoter was fused to the uidA reporter gene and transformed into hybrid aspen plants. Histochemical analysis of GUS activity showed that the PttRPS18promoter was expressed in the cambial region in the same manner as the luciferase reporter gene in the initial screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. 1997. Current Protocols in Molecular Biology. John Wiley, New York.

    Google Scholar 

  • Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8720.

    Google Scholar 

  • Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein, utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–251.

    Google Scholar 

  • Chang, S., Puryear, J. and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113–116.

    Google Scholar 

  • Church, G.M. and Gilbert, W. 1985. The genomic sequencing technique. Prog. Clin. Biol. Res. 177: 17–21.

    Google Scholar 

  • De Buck, S., Jacobs, A., Van Montagu, M. and Depicker, A. 1999. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J. 20: 295–304.

    Google Scholar 

  • Eriksson, M., Israelsson, M., Olsson, O. and Moritz, T. 2000. Increased gibberellin biosynthesis in transgenic hybrid aspen trees promotes growth, biomass production and xylem fibre length. Nature Biotechnol. 18: 784–788.

    Google Scholar 

  • Eriksson, M. and Moritz, T. 2002. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula × tremuloides Michx.). Planta 214: 920–930.

    Google Scholar 

  • Fütterer, J. and Hohn, T. 1996. Translation in plants-rules and exceptions. Plant Mol. Biol. 32: 159–189.

    Google Scholar 

  • Gheysen, G., Villarroel, R. and Van Montague, M. 1991. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev. 5: 287–297.

    Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C. and Hope, S. 1997.Removal of a cryptic intron and subcellular localisation of a green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.

    Google Scholar 

  • Herman, L., Jacobs, A., Van Montagu, M. and Depicker, A. 1990. Plant chromosome marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol. Gen. Genet. 224: 248–256.

    Google Scholar 

  • Hertzberg, M., Aspeborg, H., Schrader, J., Andersson, A., Erlandsson, R., Blomqvist, K., Bhalerao, R., Uhlen, M., Teeri, T.T., Lundeberg, J., Sundberg, B., Nilsson, P. and Sandberg, G. 2001. A transcriptional roadmap to wood formation. Proc. Natl. Acad. Sci. USA 98: 14732–14737.

    Google Scholar 

  • Hertzberg., M. and Olsson, O. 1998. Molecular characterisation of a novel plant homeobox gene expressed in the maturing xylem zone of Populus tremula × tremuloides. Plant J. 16: 285–296.

    Google Scholar 

  • Kertbundit, S., DeGreve, H., Deboeck, F., Van Montague, M. and Hernalsteens, J.-P. 1991. In vivo random β-glucuronidase gene fusions in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 88: 5212–5216.

    Google Scholar 

  • Klopfenstein, N.B., Chun, Y.W., Kim, M.-S. and Ahuja, M.R. 1997. Micropropagation, Genetic Engineering and Molecular Biology of Populus. USDA Forest Service General Technical Report RM-GTR-297, Rocky Mountain Forest and Range Experiment Station, Fort Collins, USA.

    Google Scholar 

  • Koncz, C. and Schell, J. 1986. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a new type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383–396.

    Google Scholar 

  • Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Körber, H., Redei, G.P. and Schell, J. 1989. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8471.

    Google Scholar 

  • Koncz, C., Németh, K., Rédei, G.P. and Schell, J. 1992. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20: 963–976.

    Google Scholar 

  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108: 229–241.

    Google Scholar 

  • Kozak, M. 1992. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 8: 197–225.

    Google Scholar 

  • Larson, P.R. 1994. The Vascular Cambium: Development and Structure. Springer-Verlag, Berlin.

    Google Scholar 

  • Laufs, P., Autran, D. and Traas, J. 1999. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J. 18: 131–139.

    Google Scholar 

  • Lütcke, H.A., Chow, K.C., Mickel, F.C., Moss, K.A., Kern, H.F. and Scheele, G.A. 1987. Selection of AUG codons differs in plants and animals. EMBO J. 6: 43–48.

    Google Scholar 

  • Malamy, J.E. and Benfey, P.N. 1997. Organization and cell differentiation in lateral roots in Arabidopsis thaliana. Development 124: 33–44.

    Google Scholar 

  • Matsumoto, S., Ito, Y., Hosoi, T., Takahashi, Y. and Machida, Y. 1990. Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol. Gen. Genet. 224: 309–316.

    Google Scholar 

  • Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Rédei, G.P., Schell, J., Hohn, B. and Koncz, C. 1991. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10: 697–704.

    Google Scholar 

  • Mellerowicz, E.J., Baucher, M., Sundberg, B. and Boerjan, W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47: 239–274.

    Google Scholar 

  • Nacry, P., Camilleri, C., Courtial, B., Caboche, M. and Bouchez D. 1998. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149: 641–650.

    Google Scholar 

  • Nilsson, O. and Olsson, O. 1997. Getting to the root: the role of the Agrobacterium rhizogenes rol-genes in the formation of hairy roots. Physiol. Plant. 100: 463–473.

    Google Scholar 

  • Nilsson, O., Aldén, T., Sitbon, F., Little C.H.A., Chalupa, V., Sandberg, G. and Olsson, O. 1992. Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and nondestructive imaging. Transgenic Res. 1: 209–220.

    Google Scholar 

  • Nilsson, O., Little, C.H.A., Sandberg, G. and Olsson, O. 1996a. Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol. Biol. 31: 887–895.

    Google Scholar 

  • Nilsson, O., Moritz, T., Sundberg, B., Sandberg, G. and Olsson, O. 1996b. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol.112: 493–502.

    Google Scholar 

  • Nilsson, O., Tuominen, H., Sundberg, B. and Olsson, O. 1997. The Agrobacterium rhizogenes rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid hybrid aspen. Physiol. Plant. 100: 456–462.

    Google Scholar 

  • Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M., Martinusen, I., Olsson, O., Sandberg, G. and Moritz, T. 1997. Ectopic expression of oat phytochrome A in hybrid aspen changes critical day length for growth and prevents cold acclimation. Plant J. 12: 1339–1350.

    Google Scholar 

  • Olsson, O. and Little, C.H.A. 2000. Molecular control of the development and function of the vascular cambium. In: S.M. Jain and S.C. Minocha (Eds.) Molecular Biology of Woody Plants, Vol. 1, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 155–180.

    Google Scholar 

  • Olsson, O., Esher, A., Koncz, C., Sandberg, G., Schell, J. and Szalay, A.A. 1989. Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes of Vibrio harvey. Gene 81: 335–347.

    Google Scholar 

  • Putterill, J.J. and Gardner, R.C. 1989. Initiation of translation of the β-glucuronidase reporter genes at internal AUG codons in plant cells. Plant Sci. 62: 199–205.

    Google Scholar 

  • Regad, F., Hervé, C., Mainx, O., Bergounioux, C., Tremousaygue, D. and Lescure, B. 1995. The tef1 box, a ubiquitous cis acting element involved in the activation of plant genes that are highly expressed in cycling cells. Mol. Gen. Genet 248: 703–711.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Springer, P.S. 2000. Gene traps: Tools for plant development and genomics. Plant Cell 12: 1007–1020.

    Google Scholar 

  • Springer, P.S., McCombie, W.R., Sundaresan, V. and Martienssen, R.A. 1995. Gene trap tagging of PROLIFERA, an essential MCM2–3–5-like gene in Arabidopsis. Science 268: 877–880.

    Google Scholar 

  • Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu,., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlen, M., Sundberg, B. and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 22: 13330–13335.

    Google Scholar 

  • Sundberg, B, Tuominen, H., Nilsson, O., Moritz, T., Little, C.H.A., Sandberg, G. and Olsson, O. 1997. Growth and development lteration in transgenic Populus: status and potential applications. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim and R.J. Ahuja (Eds.) Micropropagation, Genetic Engineering, and Molecular Biology of Populus, USDA Forest Service General Technical Report RM-GTR-297, Rocky Mountain Forest and Range Experiment Station, Fort Collins, USA, pp. 74–83.

    Google Scholar 

  • Taylor, C.B. 1997. Promoter fusion analysis: An insufficient measure of gene expression. Plant Cell 9: 273–275.

    Google Scholar 

  • Tinland, B. 1996. The integration of T-DNA into plant genomes. Trends Plant Sci. 6: 178–184.

    Google Scholar 

  • Topping, J.F. and Lindsey, K. 1995. Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development. Transgenic Res. 4: 291–305.

    Google Scholar 

  • Topping, J.F. and Lindsey, K. 1997. Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell 9: 1713–1725.

    Google Scholar 

  • Topping, J.F., Wei, W. and Lindsey, K. 1991. Functional tagging of regulatory elements in the plant genome. Development 112: 1009–1019.

    Google Scholar 

  • Tuominen, H., Sitbon, F., Jacobsson, C., Sandberg, G., Olsson, O. and Sundberg, B. 1995. Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol. 109: 1179–1189.

    Google Scholar 

  • Tuominen, H., Puech, L., Regan, S., Fink, S., Olsson, O. and Sundberg, B. 2000. Cambial-region-specific expression of the Argobacterium iaa genes in transgenic hybrid aspen visualized by a linked uidA reporter gene. Plant Physiol. 123: 531–541.

    Google Scholar 

  • Van Lijsebettens,., Vanderhaeghen, R., De Block,., Bauw, G., Villarroel, R. and Van Montague,. 1994. An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J. 13: 3378–3388.

    Google Scholar 

  • Vieira, J. and Messing, J. 1991. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100: 189–194.

    Google Scholar 

  • Walden, R., Koncz, C. and Schell, J. 1990. The use of gene vectors in plant molecular biology. Meth. Mol. Cell. Biol. 1: 175–194.

    Google Scholar 

  • Wong, P., Myal, Y., Shui, R. and Tenniswood, M. 1993. Identification and cloning of a new category of DNA fragments that are poorly represented in human genomic libraries. Biochem. Biophys. Res. Com. 190: 453–461.

    Google Scholar 

  • Zambryski, P. 1988. Basic processes underlying Agrobacteriummediated DNA transfer to plant cells. Annu. Rev. Genet. 22: 1–30.

    Google Scholar 

  • Zambryski, P., Tempe, J. and Schell, J. 1989. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olof Olsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, AM., Wang, C., Stenberg, A. et al. Characterization of a PttRPS18 promoter active in the vascular cambium region of hybrid aspen. Plant Mol Biol 52, 317–329 (2003). https://doi.org/10.1023/A:1023919331037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023919331037

Navigation