Skip to main content
Log in

A Rational Approach to Personalized Anticancer Therapy: Chemoinformatic Analysis Reveals Mechanistic Gene-Drug Associations

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To predict the response of cells to chemotherapeutic agents based on gene expression profiles, we performed a chemoinformatic study of a set of standard anticancer agents assayed for activity against a panel of 60 human tumor-derived cell lines from the Developmental Therapeutics Program (DTP) at the National Cancer Institute (NCI).

Methods. Mechanistically-relevant gene:drug activity associations were identified in the scientific literature. The correlations between expression levels of drug target genes and the activity of the drugs against the NCI's 60 cell line panel were calculated across and within each tumor tissue type, using published drug activity and gene expression data.

Results. Compared to other mechanistically-relevant gene-drug associations, that of triciribine phosphate (TCN-P) and adenosine kinase (ADK) was exceptionally strong—overall and within tumor tissue types—across the 60 cell lines profiled for chemosensitivity (1) and gene expression (2).

Conclusion. The results suggest ADK expression may be useful for stratifying TCN-P-responsive vs. non-responsive tumors. Based on TCN-P's mechanism of action and the observed TCN-P:ADK association, we contend that catalytic drug activation provides a rational, mechanistic basis for personalizing cancer treatment based on tumor-specific differences in the expression of drug-activating enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Boyd. The NCI In Vitro Anticancer Drug Discovery Screen. In B. Teicher (ed), Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval, Humana Press, Totowa, New Jersey, 1995, pp. 23–41.

    Google Scholar 

  2. J. E. Staunton, D. K. Slonim, H. A. Coller, P. Tamayo, M. J. Angelo, J. Park, U. Scherf, J. K. Lee, W. O. Reinhold, J. N. Weinstein, J. P. Mesirov, E. S. Lander, and T. R. Golub. Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. USA 98:10787–10792 (2001).

    PubMed  Google Scholar 

  3. R. H. Shoemaker, D. A. Scudiero, G. Melillo, M. J. Currens, A. P. Monks, A. A. Rabow, D. G. Covell, and E. A. Sausville. Application of high-throughput, molecular-targeted screening to anticancer drug discovery. Curr. Top. Med. Chem. 2:229–246 (2002).

    PubMed  Google Scholar 

  4. A. A. Rabow, R. H. Shoemaker, E. A. Sausville, and D. G. Covell. Mining the National Cancer Institute's tumor-screening database: identification of compounds with similar cellular activities. J. Med. Chem. 45:818–840 (2002).

    PubMed  Google Scholar 

  5. O. Keskin, I. Bahar, R. L. Jernigan, J. A. Beutler, R. H. Shoemaker, E. A. Sausville, and D. G. Covell. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure. Anticancer Drug Des. 15:79–98 (2000).

    PubMed  Google Scholar 

  6. J. N. Weinstein, T. G. Myers, P. M. O'Connor, S. H. Friend, A. J. Fornace Jr., K. W. Kohn, T. Fojo, S. E. Bates, L. V. Rubinstein, N. L. Anderson, J. K. Buolamwini, W. W. van Osdol, A. P. Monks, D. A. Scudiero, E. A. Sausville, D. W. Zaharevitz, B. Bunow, V. N. Viswanadhan, G. S. Johnson, R. E. Wittes, and K. D. Paull. An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349 (1997).

    Google Scholar 

  7. U. Scherf, D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee, L. Tanabe, K. W. Kohn, W. C. Reinhold, T. G. Myers, D. T. Andrews, D. A. Scudiero, M. B. Eisen, E. A. Sausville, Y. Pommier, D. Botstein, P. O. Brown, and J. N. Weinstein. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24:236–244 (2000).

    PubMed  Google Scholar 

  8. D. T. Ross, U. Scherf, M. B. Eisen, C. M. Perou, C. Rees, P. Spellman, V. Iyer, S. S. Jeffrey, M. Van de Rijn, M. Waltham, A. Pergamenschikov, J. C. Lee, D. Lashkari, D. Shalon, T. G. Myers, J. N. Weinstein, D. Botstein, and P. O. Brown. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24:227–235 (2000).

    PubMed  Google Scholar 

  9. L. L. Wotring, G. W. Crabtree, N. L. Edwards, R. E. Parks Jr., and L. B. Townsend. Mechanism of activation of triciribine phosphate (TCN-P) as a prodrug form of TCN. Cancer Treat. Rep. 70:491–497 (1986).

    PubMed  Google Scholar 

  10. R. B. Schilcher, J. D. Young, and L. H. Baker. Reversed-phase high-performance liquid chromatographic determination of tricyclic nucleoside and tricyclic nucleoside 5′-phosphate in biological specimens. J. Chromatogr. 337:55–62 (1985).

    PubMed  Google Scholar 

  11. L. L. Wotring, J. E. Passiatore, J. L. Roti Roti, J. L. Hudson, and L. B. Townsend. Effects of the tricyclic nucleoside 6-amino-4-methyl-8-(beta-D-ribofuranosyl)-pyrrolo[4,3,2-de]pyrimido[4,5-c]pyridazine on the viability and cell cycle distribution of L1210 cells in vitro. Cancer Res. 45:6355–6361 (1985).

    PubMed  Google Scholar 

  12. R. G. Ptak, K. Z. Borysko, A. R. Porcari, J. L. Buthod, L. E. Holland, C. Shipman Jr., L. B. Townsend, and J. C. Drach. Phosphorylation of triciribine is necessary for activity against HIV type 1. AIDS Res. Hum. Retroviruses 14:1315–1322 (1998).

    PubMed  Google Scholar 

  13. A. R. Porcari, R. G. Ptak, K. Z. Borysko, J. M. Breitenbach, S. Vittori, L. L. Wotring, J. C. Drach, and L. B. Townsend. Deoxy sugar analogues of triciribine: correlation of antiviral and antiproliferative activity with intracellular phosphorylation. J. Med. Chem. 43:2438–2448 (2000).

    PubMed  Google Scholar 

  14. L. G. Feun, N. Savaraj, G. P. Bodey, K. Lu, B. S. Yap, J. A. Ajani, M. A. Burgess, R. S. Benjamin, E. McKelvey, and I. Krakoff. Phase I study of tricyclic nucleoside phosphate using a five-day continuous infusion schedule. Cancer Res. 44:3608–3612 (1984).

    PubMed  Google Scholar 

  15. K. Hoffman, F. A. Holmes, G. Fraschini, L. Esparza, D. Frye, M. N. Raber, R. A. Newman, and G. N. Hortobagyi. Phase I-II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother. Pharmacol. 37:254–258 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo R. Rosania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shedden, K., Townsend, L.B., Drach, J.C. et al. A Rational Approach to Personalized Anticancer Therapy: Chemoinformatic Analysis Reveals Mechanistic Gene-Drug Associations. Pharm Res 20, 843–847 (2003). https://doi.org/10.1023/A:1023893700386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023893700386

Navigation