Skip to main content
Log in

Electronic Inhomogeneity and Possible Pseudogap Behavior of Spin Susceptibility in the Electron-Doped Superconductor Sr0.93La0.07CuO2: 63Cu NMR Study

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The magnetic susceptibility, NMR spectra, nuclear spin-lattice relaxation rate (T 1 −1)α and the echo-decay rate (T 2 −1) of 63Cu were measured for the electron-doped infinite-layer superconductor Sr0.93La0.07CuO2/T c onset = 42.4 K). The results obtained revealed a clear tendency toward frustrated phase separation in this nominally underdoped high-T c material. Above T c the 63Cu Knight shift is found to decrease upon cooling giving an evidence for a pseudogap-like decrease of the spin susceptibility. It is shown that unusual anisotropy of the 63Cu Knight shift in the electron-doped CuO2 layer can be understood as a “compensation effect” between the isotropic hyperfine coupling, mediated by the 4s Fermi-contact and 3d core-polarization exchange interactions, and the anisotropic on-site spin-dipolar hyperfine interaction of the Cu nuclei with the itinerant carriers, whose states near the Fermi energy have a sizeable admixture of Cu(4pz) and/or Cu(3dz 2) orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61(1999).

    Google Scholar 

  2. Y. Onose et al., Phys. Rev. Lett. 87, 217001(2001).

    Google Scholar 

  3. S. Kleefisch et al., Phys. Rev. B 63, 100507(2001).

    Google Scholar 

  4. E. Singley et al., Phys. Rev. B 64, 224503(2001).

    Google Scholar 

  5. S. Kambe et al., J. Phys. Soc. Jpn. 60, 400(1991).

    Google Scholar 

  6. T. R. Thurston et al., Phys. Rev. Lett. 65, 263(1990).

    Google Scholar 

  7. M. Masuda, Y. Endoh, and K. Yamada, Phys. Rev. B 45, 12548(1992).

    Google Scholar 

  8. V. J. Emery and S. A. Kivelson, cond-mat/9902179.

  9. N. P. Armitage et al., Phys. Rev. Lett. 86, 1126(2001).

    Google Scholar 

  10. J. Mesot et al., Phys. Rev. Lett. 70, 865(1993).

    Google Scholar 

  11. M. Abe et al., Physica C 160, 8(1989).

    Google Scholar 

  12. G.-Q. Zheng et al., J. Phys. Soc. Jpn. 58, 1910(1989).

    Google Scholar 

  13. W. Henggeler et al., Europhys. Lett. 29, 233(1995).

    Google Scholar 

  14. T. Imai et al., J. Phys. Chem. Solids 56, 1921(1995).

    Google Scholar 

  15. K. Mikhalev et al., Physica C 304, 165(1998).

    Google Scholar 

  16. G. V. M. Williams et al., cond-mat/0111421.

  17. F. Mila and T. M. Rice, Physica C 157, 561(1989).

    Google Scholar 

  18. R. J. Cooding, K. J. E. Vos, and P. W. Leung, Phys. Rev. B 50, 12866(1994).

    Google Scholar 

  19. A. Podlesnyak et al., J. Supercond Incorporating Novel Magnetism 13, 145(2000).

    Google Scholar 

  20. E. R. Andrew and D. P. Tunstall, Proc. R. Soc. London 78, 1(1961).

    Google Scholar 

  21. C. U. Jung, J. Y. Kim, S. M. Lee, M.-S. Kim Y. Yao S. Y. Lee, S.-I. Lee and D. H. Ha, Physica C 364, 225(2001).

    Google Scholar 

  22. K. Kumagai, I. Watanabe, H. Aoki, Y. Nakamura, T. Kimura, Y. Nakamichi, and N. Nakajima, Physica B 148, 480(1987).

    Google Scholar 

  23. C. P. Slichter, Principles of Magnetic Resonance, (Springer, Berlin, 1989).

    Google Scholar 

  24. A. W. Overhauser, Phys. Rev. 128, 1437(1962).

    Google Scholar 

  25. N. Bulut and D. J. Scalapino, Phys. Rev. Lett. 68, 706(1992).

    Google Scholar 

  26. M. Mehring, Appl. Magn. Res. 3, 383(1992).

    Google Scholar 

  27. W. W. WarrenJr., Phys. Rev. B 3, 3708(1971).

    Google Scholar 

  28. S. V. Verkhovskii, Y. Zhdanov, V. Lavrentyev, B. Aleksashin, K. Mikhalev, A. Bogdanovich, V. Serikov Eu. Medvedev, and M. Sadovskii, Appl. Magn. Res. 3, 649(1992).

    Google Scholar 

  29. B. S. Shastry and E. Abrahams, Phys. Rev. Lett. 72, 1933(1994).

    Google Scholar 

  30. S. Ohsugi, Y. Kitaoki, K. Ishida, G.-Q. Zheng, and K. Asayamael, J. Phys. Soc. Jpn. 63, 700(1994).

    Google Scholar 

  31. A. Narath, in Hyperfine Interactions, A. J. Freeman, and R. B. Frankel, eds. (Academic Press, New York, 1967), pp. 382–453.

    Google Scholar 

  32. T. Asada and K. Terakura, J. Phys. F: Met. Phys. 12, 1387(1982).

    Google Scholar 

  33. M. Takigawa P. C. Hammel, R. H. Heffner, Z. Fisk J. L. Smith, and R. B. Schwarz, Phys. Rev. B 39, 300(1989).

    Google Scholar 

  34. K. Westerholt and H. Bach, Phys. Rev. B 39, 858(1989).

    Google Scholar 

  35. R. Pozzi, M. Mali, and D. Brinkmann, Phys. Rev B 60, 9650(1999).

    Google Scholar 

  36. K. M. Lang, V. Madhavan J. E. Hoffman, E. W. Hudson, H. Eisaki S. Uchida and J. C. Davis, Nature 415, 412(2002).

    Google Scholar 

  37. V. Bobrovskii, A. Mirmelstcin, A. Podlesnyak, I. Zhdakhin, B. Goschitskiia, E. Mitberg, V. Zubkov, T. D'yachkova, N. Kadyrova, E. Khlybov, F. Fauth, and A. Furrer, Physica B 234–236, 818(1997).

    Google Scholar 

  38. Y. N. Ovchinnikov, S. A. Wolf, and V. Z. Kresin, Phys. Rev. B 63, 064524(2001).

    Google Scholar 

  39. M. V. Sadovskii, Physics—USPEKHI 171, 539(2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkhovskii, S., Mikhalev, K., Gerashenko, A. et al. Electronic Inhomogeneity and Possible Pseudogap Behavior of Spin Susceptibility in the Electron-Doped Superconductor Sr0.93La0.07CuO2: 63Cu NMR Study. Journal of Superconductivity 16, 543–554 (2003). https://doi.org/10.1023/A:1023881323217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023881323217

Navigation