Skip to main content
Log in

Effect of CuO2 Lattice Strain on the Electronic Structure and Properties of High-Tc Cuprate Family

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Doping and strain dependences of the electronic structure of the CuO6-octahedra layer within LDA+GTB method in the frameworks of six-band p-d model are calculated. Band structure and Fermi surface of the quasiparticle excitations in the effective Hubbard model are characterized by inhomogeneous distribution of the \({\textbf {k}}\)-dependent spectral weight. Doping results in reconstruction of the band structure, redistribution of the spectral weight over dispersion surface, and reconstruction of Fermi surface from small hole pockets in the underdoped region to large hole contour in the overdoped region through two quantum phase transitions (QPT). Strain increasing leads to displacement of the valence and conductivity bands, bandwidths decreasing, and shift of the concentrations corresponding to QPTs. Strain dependences of the antiferromagnetic exchange coupling and DOS at the Fermi level determining superconducting temperature \({T_{c}}\) are obtained. Effective exchange coupling in the equation for \({T_{c}}\) demonstrates monotonic strain dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arrouy, F., Locquet, J.-P., Williams, E.J., Mächler, E., Berger, R., Gerber, C., Monroux, C., Grenier, J.-C., Wattiaux, A.: Growth, microstructure, and electrochemical oxidation of MBE-grown c-axis La2CuO4 thin films. Phys. Rev. B 54, 7512–7520 (1996)

    Article  ADS  Google Scholar 

  2. Sato, H., Naito, M.: Increase in the superconducting transition temperature by anisotropic strain effect in (001) La1.85Sr0.15CuO4 thin films on LaSrAlO4 substrates. Phys. C 274, 221–226 (1997)

    Article  ADS  Google Scholar 

  3. Locquet, J.-P., Perret, J., Fompeyrine, J., Mächler, E., Seo, J.W., Van Tendeloo, G.: Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998)

    Article  ADS  Google Scholar 

  4. Sato, H., Tsukada, A., Naito, M., Matsuda, A.: La2−xSrxCuOy epitaxial thin films (x = 0 to 2): Structure, strain and superconductivity. Phys. Rev. B 61, 12447–12456 (2000)

    Article  ADS  Google Scholar 

  5. Attfield, J.P., Kharlanov, A.L., McAllister, J.A.: Cation effects in doped La2CuO4 superconductors. Nature 394, 157–159 (1998)

    Article  ADS  Google Scholar 

  6. Agrestini, S., Saini, N.L., Bianconi, G., Bianconi, A.: The strain of CuO2 lattice: the second variable for the phase diagram of cuprate perovskites. J. Phys. A: Math. Gen. 36, 9133–9142 (2003)

    Article  ADS  Google Scholar 

  7. Bianconi, A., Saini, N.L., Agrestini, S., Di Castro, D., Bianconi, G.: The strain quantum critical point for superstripes in the phase diagram of all cuprate perovskites. Int. J. Mod. Phys. B 14, 3342–3355 (2000)

    Article  ADS  Google Scholar 

  8. Kusmartsev, F.V., Di Castro, D., Bianconi, G., Bianconi, A.: Transformation of strings into an inhomogeneous phase of stripes and itinerant carriers. Phys. Lett. A 275, 118–123 (2000)

    Article  ADS  Google Scholar 

  9. Bianconi, A., Di Castro, D., Bianconi, G., Pifferi, A., Saini, N.L., Chou, F.C., Johnston, D.C., Colapietro, M.: Coexistence of stripes and superconductivity: T c amplification in a superlattice of superconducting stripes. Phys. C 341-348, 1719–1722 (2000)

    Article  ADS  Google Scholar 

  10. Büchner, B., Breuer, M., Freimuth, A., Kampf, A.P.: Critical buckling for the disappearance of superconductivity in rare-earth-doped La2−xSrxCuO4. Phys. Rev. Lett. 73, 1841–1844 (1994)

    Article  ADS  Google Scholar 

  11. Anderson, P.W.: The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987)

    Article  ADS  Google Scholar 

  12. Bianconi, A., Congiu Castellano, A., De Santis, M., Rudolf, P., Lagarde, P., Flank, A.M., Marcelli, A.: L2,3 xanes of the high T c superconductor YBa2Cu3 O ≈ 7 with variable oxygen content. Solid State Commun. 63, 1009–1013 (1987)

    Article  ADS  Google Scholar 

  13. Emery, V.J.: Theory of High-T c superconductivity in oxides. Phys. Rev. Lett. 58, 2794–2797 (1987)

    Article  ADS  Google Scholar 

  14. Varma, C.M., Schmitt-Rink, S., Abrahams, E.: Charge transfer excitations and superconductivity in “ionic” metals. Solid State Commun. 62, 681–685 (1987)

    Article  ADS  Google Scholar 

  15. Korshunov, M.M., Gavrichkov, V.A., Ovchinnikov, S.G., Pchelkina, Z.V., Nekrasov, I.A., Korotin, M.A., Anisimov, V.I.: Parameters of the effective singlet-triplet model for band structure of high-T c cuprates by alternative approaches. JETP 99, 559–565 (2004)

    Article  ADS  Google Scholar 

  16. Korshunov, M.M., Gavrichkov, V.A., Ovchinnikov, S.G., Nekrasov, I.A., Pchelkina, Z.V., Anisimov, V.I.: Hybrid LDA and generalized tight-binding method for electronic structure calculations of strongly correlated electron systems. Phys. Rev. B. 72, 165104 (2005)

    Article  ADS  Google Scholar 

  17. Bianconi, A., Saini, N.L., Lanzara, A., Missori, M., Rossetti, T., Oyanagi, H., Yamaguchi, H., Oka, K., Ito, T.: Determination of the local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 76, 3412–3415 (1996)

    Article  ADS  Google Scholar 

  18. Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975)

    Article  ADS  Google Scholar 

  19. Gunnarsson, O., Jepsen, O., Andersen, O.K.: Self-consistent impurity calculations in the atomic-spheres approximation. Phys. Rev. B 27, 7144–7168 (1983)

    Article  ADS  Google Scholar 

  20. Andersen, O.K., Jepsen, O.: Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 53, 2571–2574 (1984)

    Article  ADS  Google Scholar 

  21. http://amulet-code.org/tb-lmto-2

  22. Gunnarsson, O., Andersen, O.K., Jepsen, O., Zaanen, J.: Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe. Phys. Rev. B 39, 1708–1722 (1989)

    Article  ADS  Google Scholar 

  23. Anisimov, V.I., Gunnarsson, O.: Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43, 7570–7574 (1991)

    Article  ADS  Google Scholar 

  24. Ovchinnikov, S.G., Sandalov, I.S.: The band structure of strong-correlated electrons in La2−xSrxCuO4 and YBa2Cu3 O 7−y. Phys. C 161, 607–617 (1989)

    Article  ADS  Google Scholar 

  25. Gavrichkov, V.A., Ovchinnikov, S.G., Borisov, A.A., Goryachev, E.G.: Evolution of the band structure of quasiparticles with doping in copper oxides on the basis of a generalized tight-binding method. JETP 91, 369–383 (2000)

    Article  ADS  Google Scholar 

  26. Kuz’min, E.V., Ovchinnikov, S.G.: Electron correlations in a Hubbard antiferromagnetic semiconductor. Weak coupling. Teor. Mat. Fiz. 31, 523–531 (1977)

    Article  Google Scholar 

  27. Ovchinnikov, S.G., Val’kov, V.V.: Hubbard Operators in the Theory of Strongly Correlated Electrons. Imperial College Press, London-Singapure (2004)

    Book  MATH  Google Scholar 

  28. Plakida, N.M., Anton, L., Adam, S., Adam, G.: Exchange and spin-fluctuation mechanisms of superconductivity in cuprates. JETP 97, 331–342 (2003)

    Article  ADS  Google Scholar 

  29. Korshunov, M., Ovchinnikov, S.: Doping-dependent evolution of low-energy excitations and quantum phase transitions within an effective model for high-T c copper oxides. Eur. Phys. J. B. 57, 271–278 (2007)

    Article  ADS  Google Scholar 

  30. Makarov, I.A., Ovchinnikov, S.G.: Temperature dependence of the electronic structure of La2CuO4 in the multielectron LDA+GTB approach. JETP 148, 526–534 (2015)

    Google Scholar 

  31. Nekrasov, I.A., Kuchinskii, E.Z., Pchelkina, Z.V., Sadovskii, M.V.: Pseudogap in normal underdoped phase of Bi2212: LDA+DMFT+Σk. Phys. C 460-462, 997–999 (2007)

    Article  ADS  Google Scholar 

  32. Nekrasov, I.A., Pavlov, N.S., Kuchinskii, E.Z., Sadovskii, M.V., Pchelkina, Z.V., Zabolotnyy, V.B., Geck, J., Büchner, B., Borisenko, S.V., Inosov, D.S., Kordyuk, A.A., Lambacher, M., Erb, A.: Electronic structure of Pr2−xCexCuO4 studied via ARPES and LDA+DMFT+Σk. Phys. Rev. B 80, 140510R (2009)

    Article  ADS  Google Scholar 

  33. Norman, M., Ding, H., Randeria, M., Campuzano, J.C., Yokoya, T., Takeuchik, T., Takahashi, T., Mochiku, T., Kadowaki, K., Guptasarma, P., Hinks, D.G.: Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998)

    Article  ADS  Google Scholar 

  34. Shen, K.M., Ronning, F., Lu, D.H., Baumberger, F., Ingle, N.J.C., Lee, W.S., Meevasana, W., Kohsaka, Y., Azuma, M., Takano, M., Takagi, H., Shen, Z.-X.: Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2. Science 307, 901–904 (2005)

    Article  ADS  Google Scholar 

  35. Doiron-Leyraud, N., Proust, C., LeBoeuf, D., Levallois, J., Bonnemaison, J.-B., Liang, R., Bonn, D.A., Hardy, W.N., Taillefer, L.: Quantum oscillations and the Fermi surface in an underdoped high-T c superconductor. Nature 447, 565–568 (2007)

    Article  ADS  Google Scholar 

  36. Yelland, E.A., Singleton, J., Mielke, C.H., Harrison, N., Balakirev, F.F., Dabrowski, B., Cooper, J.R.: Quantum oscillations in the underdoped cuprate YBa2Cu4 O 8. Phys. Rev. Lett. 100, 047003 (2008)

    Article  ADS  Google Scholar 

  37. Barabanov, A.F., Kovalev, A.A., Urazaev, O.V., Belemuk, A.M., Hayn, R.: Evolution of the Fermi surface of cuprates on the basis of the spin-polaron approach. JETP 92, 677–695 (2001)

    Article  ADS  Google Scholar 

  38. Plakida, N.M., Oudovenko, V.S.: Electron spectrum in high-temperature cuprate superconductors. JETP 104, 230–244 (2007)

    Article  ADS  Google Scholar 

  39. Avella, A.: Composite operator method analysis of the underdoped cuprates puzzle. Advances in Condensed Matter Physics 2014, 515698 (2014)

    Article  Google Scholar 

  40. Gavrichkov, V.A., Pchelkina, Z.V., Nekrasov, I.A., Ovchinnikov, S.G.: Pressure effect on the energy structure and superexchange interaction in undoped orthorhombic La2CuO4. Int. J. Mod. Phys. B 30, 1650180 (2016)

    Article  ADS  Google Scholar 

  41. Gavrichkov, V.A., Polukeev, S.I., Ovchinnikov, S.G.: Contribution from optically excited many-electron states to the superexchange interaction in Mott-Hubbard insulators. Phys. Rev. B 95, 144424 (2017)

    Article  ADS  Google Scholar 

  42. Hubbard, J.: Electron correlations in narrow energy bands. IV. The atomic representation. Proc. R. Soc. A 285, 542–560 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  43. Chao, K.A., Spalek, J., Oleś, A.M.: J. Phys. C: Kinetic exchange interaction in a narrow S-band. Solid State Phys. 10, L271–L276 (1977)

    Article  ADS  Google Scholar 

  44. Gugenberger, F., Meingast, C., Roth, G., Grube, K., Breit, V., Weber, T., Wuhl, H., Uchida, S., Nakamura, Y.: Uniaxial pressure dependence of T c from high-resolution dilatometry of untwinned La2−xSrxCuO4 single crystals. Phys. Rev. B 49, 13137–13142 (1994)

    Article  ADS  Google Scholar 

  45. Meingast, C., Junod, A., Walker, E.: Superconducting fluctuations and uniaxial-pressure dependence of T c of a Bi2Sr2CaCu2 O 8+x single crystal from high-resolution thermal expansion. Physica (Amsterdam) 272C, 106–114 (1996)

    ADS  Google Scholar 

  46. Innocenti, D., Poccia, N., Ricci, A., Valletta, A., Caprara, S., Perali, A., Bianconi, A.: Resonant and crossover phenomena in a multiband superconductor: tuning the chemical potential near a band edge. Phys. Rev. B 82, 184528 (2010)

    Article  ADS  Google Scholar 

  47. Innocenti, D., Valletta, A., Bianconi, A.: Shape resonance at a Lifshitz transition for high temperature superconductivity in multiband superconductors. J. Supercond. Nov. Magn. 24, 1137–1143 (2011)

    Article  Google Scholar 

  48. Perali, A., Innocenti, D., Valletta, A., Bianconi, A.: Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Supercond. Sci. Technol. 25, 124002 (2012)

    Article  ADS  Google Scholar 

  49. Bianconi, A., Jarlborg, T.: Superconductivity above the lowest Earth temperature in pressurized sulfur hydride. EPL 112, 37001 (2015)

    Article  ADS  Google Scholar 

  50. Jarlborg, T., Bianconi, A.: Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor. Sci. Rep. 6, 24816 (2016)

    Article  ADS  Google Scholar 

  51. Mazziotti, M.V., Valletta, A., Campi, G., Innocenti, D., Perali, A., Bianconi, A.: Possible Fano resonance for high-T c multi-gap superconductivity in p-Terphenyl doped by K at the Lifshitz transition. EPL 118, 37003 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

We thank the Presidium RAS program No.12 “Fundamental problems of high temperature superconductivity” for the financial support under the project 0356-2018-0063. The reported study was funded by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science according to the research project:“Features of electron-phonon coupling in high-temperature superconductors with strong electronic correlations” No. 18-42-240017. This work was done under the State contract (FASO) No. 0389-2014-0001 and supported in part by RFBR grants No. 17-02-00015 and 18-02-00281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Makarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, I.A., Gavrichkov, V.A., Shneyder, E.I. et al. Effect of CuO2 Lattice Strain on the Electronic Structure and Properties of High-Tc Cuprate Family. J Supercond Nov Magn 32, 1927–1935 (2019). https://doi.org/10.1007/s10948-018-4936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4936-9

Keywords

Navigation