Skip to main content
Log in

The Role of Horizontal Gene Transfer by Bacteriophages in the Origin of Pathogenic Bacteria

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review considers the involvement of bacteriophages in transferring genes, which determine bacterial pathogenicity, and the increasing role of comparative genomics and genetics of bacteria and bacteriophages in detecting new cases of horizontal gene transfer. Examples of phage participation in this process proved to a different extent are described. Emphasis is placed on the original work carried out in Russia and focused on bacteriophages (temperate transposable phages and giant virulent φKZ-like phages) of conditional pathogen Pseudomonas aeruginosa.Consideration is given to the possible lines of further research of the role of bacteriophages in the infection process and, in particular, the role of virulent phages, whose products are similar to those of pathogenic bacteria, in modification of clinical signs of infectious diseases and in evolution. An attempt is made to predict the possible direction of pathogen evolution associated with development of new treatment strategies and generation of new specific niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathews, C.K., An Overview of the T4 Development Program, Molecular Biology of Bacteriophage T4, Karam, J.D., Ed., Washington, DC: Am. Soc. Microbiol., 1994, pp. 1-8.

    Google Scholar 

  2. Gottesman, M., Bacteriophage ?: The Untold Story, J. Mol. Biol., 1999, vol. 293, pp. 177-180.

    Google Scholar 

  3. Shapiro, J.A., Transposable Elements as the Key to a 21st Century View of Evolution, Genetics (The Hague), 1999, vol. 107, pp. 171-179.

    Google Scholar 

  4. Pleteneva, E.N., Mitkina, L.N., Burkal'tseva, M.V., and Krylov, V.N., Comparative Frequencies of Imi-Resistant Pseudomonas aeruginosa Mutants Arising after Infection with Various Transposable Bacteriophages, Genetika (Moscow), 1999, vol. 35, no. 7, pp. 886-890.

    Google Scholar 

  5. Krylov, V.N., Solov'eva, T.I., and Burkal'tseva, M.V., Pseudomonas aeruginosa PAO1 Mucoid Clones Surviving Induction of Transposable Prophages, Genetika (Moscow), 1995, vol. 31, no. 10, pp. 1375-1379.

    Google Scholar 

  6. Campbell, A., Defective Bacteriophages and Incomplete Prophages, Comprehensive Virology, vol. 8, Fraenkel-Conrat, H. and Wagner, R.R., Eds., New York: Plenum, 1977, p. 259.

    Google Scholar 

  7. Botstein, D., A Theory of Modular Evolution for Bacteriophages, Ann. N. Y. Acad. Sci., 1980, vol. 354, pp. 484-490.

    Google Scholar 

  8. Hendrix Roger, W., Margaret, C.M., Smith, R., et al., Evolutionary Relationships among Diverse Bacteriophages and Prophages: All the World Is a Phage, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 5, pp. 2192- 2197.

    Google Scholar 

  9. Maurelli, A.T., Fernandez, _R.E., Bloch, C.A., et al., “Black Holes” and Bacterial Pathogenicity: A Large Genomic Deletion That Enhances the Virulence of Shigella spp. and Enteroinvasive Escherichia coli, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 7, pp. 3943- 3948.

    Google Scholar 

  10. Levy, S.B., The Challenge of Antibiotic Resistance, Sci. Am., 1998, vol. 278, no. 3, pp. 46-53.

    Google Scholar 

  11. Holloway, B.W. and Krishnapillai, V., Bacteriophages and Bacteriocins, Genetics and Biochemistry of Pseudomonas, Clarke, P.H. and Richmond, M.H., Eds., London: Wiley, 1975, pp. 99-132.

    Google Scholar 

  12. Krylov, V.N., Tolmachova, T.O., and Akhverdian, V.Z., DNA Homology in Species of Bacteriophages Active on Pseudomonas aeruginosa, Arch. Virol., 1993, vol. 131, nos. 1-2, pp. 141-151.

    Google Scholar 

  13. Krylov, V.N., Sharibzhanova, T.O., and Akhverdyan, V.Z., Characterization of Homologous Regions in the Genomes of Various Species of Temperate Bacteriophages Active on Pseudomonas aeruginosa, Genetika (Moscow), 1992, vol. 28, no. 3, pp. 33-42.

    Google Scholar 

  14. Kilbane, J.J. and Miller, R.V., Molecular Characterization of Pseudomonas aeruginosa Bacteriophages: Identification and Characterization of the Novel Virus B86, Virology, 1988, vol. 164, no. 1, pp. 193-200.

    Google Scholar 

  15. Kropinski, A.M., Sequence of the Genome of the Temperate, Serotype-Converting, Pseudomonas aeruginosa Bacteriophage D3, J. Bacteriol., 2000, vol. 182, no. 21, pp. 6066-6074.

    Google Scholar 

  16. Yanenko, A.S., Bekkarevich, A.O., Gerasimov, V.A., and Krylov, V.N., A Genetic Map of Pseudomonas aeruginosa Transposable Bacteriophage D3112, Genetika (Moscow), 1988, vol. 24, no. 12, p. 2120.

    Google Scholar 

  17. Ulycznyj, P.I., Salmon, K.A., Douillard, H., and DuBow, M.S., Characterization of the Pseudomonas aeruginosa Transposable Bacteriophage D3112 A and B Genes, Biochim. Biophys. Acta, 1995, vol. 27, pp. 249- 253.

    Google Scholar 

  18. Krylov, V.N., Bogush, V.G., and Shapiro, J., Pseudomonas aeruginosa Bacteriophages Similar in DNA Structure to Phage Mu1: 1. General Description, Localization of Endonuclease-Sensitive DNA Sites, and Structure of Homoduplexes of Phage D3112, Genetika (Moscow), 1980, vol. 16, no. 5, pp. 824-832.

    Google Scholar 

  19. Akhverdyan, V.Z., Khrenova, E.A., Bogush, V.G., et al., Broad Distribution of Transposable Phages in Environmental Populations of Pseudomonas aeruginosa, Genetika (Moscow), 1984, vol. 20, no. 10, pp. 1612-1619.

    Google Scholar 

  20. Akhverdyan, V.Z., Khrenova, E.A., Reulets, M.A., et al., Characterization of Pseudomonas aeruginosa Transposable Phages of Two Groups Differing in DNA-DNA Homology, Genetika (Moscow), 1985, vol. 21, no. 5, pp. 735-747.

    Google Scholar 

  21. Howe, M.M., Phage Mu: An Overview, Phage Mu, Symonds, N., Toussaint, A., Van de Putte, P., and Howe, M.M., Eds., Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1987, pp. 25-39.

    Google Scholar 

  22. Akhverdyan, V.Z., Lobanov, A.O., Khrenova, E.A., and Krylov, V.N., Recombinational Origin of Natural Transposable Phages of Related Group B3 Species Active on Pseudomonas aeruginosa, Genetika (Moscow), 1998, vol. 34, no. 5, pp. 697-700.

    Google Scholar 

  23. Akhverdyan, V.Z., Khrenova, E.A., Lobanov, A.O., and Krylov, V.N., Demonstration of the Role of Divergence in Evolution of Group B3 Transposable Phages of Pseudomonas aeruginosa, Genetika (Moscow), 1998, vol. 34, no. 6, pp. 846-849.

    Google Scholar 

  24. Krylov, V.N., Akhverdyan, V.Z., Bogush, V.G., et al., A Module Genome Structure of Pseudomonas aeruginosa Transposable Phages, Genetika (Moscow), 1985, vol. 21, no. 5, pp. 724-734.

    Google Scholar 

  25. Krylov, V.N., Akhverdyan, V.Z., Khrenova, E.A., et al., Two Types of the Molecular Structure (Composition) of the Genome in One Species of Pseudomonas aeruginosa Transposable Phages, Genetika (Moscow), 1986, vol. 22, no. 11, pp. 2637-2648.

    Google Scholar 

  26. Roncero, C., Darzins, A., and Casadaban, M.J., Pseudomonas aeruginosa Transposable Bacteriophages D3112 and B3 Require Pili and Surface Grioth for Adsorption, J. Bacteriol., 1990, vol. 172, pp. 1899-1904.

    Google Scholar 

  27. Yanenko, A.S., Kirsanov, N.B., Gerasimova, T.V., et al., Minigenomes of P. aeruginosa Transposable Phage D3112 and Their Properties, Genetika (Moscow), 1988, vol. 24, no. 5, pp. 956-959.

    Google Scholar 

  28. Plotnikova, T.G., Akhverdyan, V.Z., Reulets, M.A., et al., Multiplicity of Integration Sites of Mu-like Bacteriophages in the Pseudomonas aeruginosa Chromosome and Plasmid, Genetika (Moscow), 1983, vol. 19, no. 10, pp. 1604-1609.

    Google Scholar 

  29. Taylor, A.L., Bacteriophage-Induced Mutation in E. coli, Proc. Natl. Acad. Sci. USA, 1963, vol. 50, pp. 1043- 1051.

    Google Scholar 

  30. Zemlyanaya, N.Yu., Kozma, A.R., and Krylov, V.N., Different Mutator Activities in Pseudomonas aeruginosa Transposable Phages, Genetika (Moscow), 1992, vol. 28, no. 2, pp. 160-163.

    Google Scholar 

  31. Gerasimov, V.A., Yanenko, A.S., Akhverdyan, V.Z., and Krylov, V.N., The Interaction of Transposable Phages: The cip Locus of Prophage D3112 Is Responsible for Suppressing Integration and Transposition of Related Pseudomonas aeruginosa Phage B39, Genetika (Moscow), 1985, vol. 21, no. 10, pp. 1634-1642.

    Google Scholar 

  32. Bidnenko, E.M., Akhverdyan, V.Z., and Krylov, V.N., Cloning and Expression Analysis of the cip1 Gene of Pseudomonas aeruginosa Transposable Phage in a Homologous Host and Escherichia coli, Genetika (Moscow), 1996, vol. 32, no. 7, pp. 914-921.

    Google Scholar 

  33. Gerasimov, V.A., Yanenko, A.S., Akhverdyan, V.Z., and Krylov, V.N., The Interaction of Pseudomonas aeruginosa Transposable Phages: Genetic Analysis of Suppression of Phage B39 Development by Prophage D3112, Genetika (Moscow), 1996, vol. 32, no. 8, pp. 1068-1073.

    Google Scholar 

  34. Plotnikova, T.G., Kulakov, L.A., Eremenko, E.N., et al., Genome Expression of Mu-like Phage D3112 Specific for Pseudomonas aeruginosa in Escherichia coli and Pseudomonas putida Cells, Genetika (Moscow), 1982, vol. 18, no. 7, pp. 1075-1084.

    Google Scholar 

  35. Krylov, V., Merlin, C., and Toussaint, A., Introduction of Pseudomonas aeruginosa Mutator Phage D3112 in Alcaligenes eutrophus Strain CH34, Res. Microbiol., 1995, vol. 146, pp. 245-250.

    Google Scholar 

  36. Plotnikova, T.G., Yanenko, S., Kirsanov, N.B., and Krylov, V.N., Transposition of the Phage D3112 Genome in Escherichia coli Cells, Genetika (Moscow), 1983, vol. 19, no. 10, pp. 1611-1615.

    Google Scholar 

  37. Krylov, V.N., Dzhusupova, A.B., Akhverdyan, V.Z., et al., A Study of the Particle Morphology and Genome Structure of Pseudomonas putida Bacteriophages for the Purposes of Their Classification, Genetika (Moscow), 1989, vol. 25, no. 9, pp. 1559-1570.

    Google Scholar 

  38. Tetart, F., Desplats, C., Kutateladze, M., et al., Phylogeny of the Major Head and Tail Genes of the Wide-Ranging T4-Type Bacteriophages, J. Bacteriol., 2001, vol. 183, no. 1, pp. 358-366.

    Google Scholar 

  39. Glantz, M.H. and Orlovsky, N.S., Desertification: A Review of the Concept, Desertification Control Bull., 1983, no. 9, pp. 15-22.

    Google Scholar 

  40. Krylov, V.N., Plotnikova, T.G., Kulakov, L.A., et al., Integration of the Genome of Pseudomonas aeruginosa Mu-like Bacteriophage D3112 in Plasmid RP4 and Introduction of the Hybrid Plasmid in P. pultida and Escherichia coli, Genetika (Moscow), 1982, vol. 18, no. 1, pp. 5-12.

    Google Scholar 

  41. Gorbunova, S.A., Yanenko, A.S., Akhverdyan, V.Z., et al., Expression of P. aeruginosa Transposable Phages in Pseudomonas putida Cells: 1. Lysogeny Establishment and Efficiency of Lytic Growth, Genetika (Moscow), 1985, vol. 21, no. 9, pp. 1455-1463.

    Google Scholar 

  42. Trenina, M.A., Akhverdyan, V.Z., Kolibaba, L.G., et al., Peculiarity of Expression of the Genome of Pseudomonas aeruginosa Transposable Phage D3112 in Escherichia coli: The Association of the Bacterial Phenotype with the Copy Number of the D3112 Genome, Genetika (Moscow), 1991, vol. 27, no. 8, pp. 1324-1335.

    Google Scholar 

  43. Barondess, J.J. and Beckwith, J., A Bacterial Virulence Determinant Encoded by Lysogenic Coliphage ?, Nature, 1990, vol. 30, no. 6287, pp. 871-874.

    Google Scholar 

  44. Yanenko, A.S., Bekkarevich, A.O., Akhverdyan, V.Z., and Krylov, V.N., Transfer of Chromosomal Genes and Generation of R' Derivatives in Pseudomonas aeruginosa Cells with the Use of RP4::D3112 cts15 Plasmids, Genetika (Moscow), 1986, vol. 22, no. 12, pp. 2784- 2793.

    Google Scholar 

  45. Timakova, N.V., Aleshkin, G.I., Titova, I.V., et al., Genetic Transmission, Inheritance, and Phenotypic Expression of Genes of Plasmid RP4::Mu cts in Bacillus cereus, Byull. Eksp. Biol. Med., 1990, vol. 109, no. 3, pp. 299-301.

    Google Scholar 

  46. Bergey's Manual of Determinative Bacteriology, Holt, J.G., Ed., Baltimore: Williams & Wilkins, 1977.

    Google Scholar 

  47. Newton, G.J., Daniels, C., Burrows, L.L., et al., Three-Components-Mediated Serotype Conversion in Pseudomonas aeruginosa by Bacteriophage D3, Mol. Microbiol., 2001, vol. 39, no. 5, pp. 1237-1247.

    Google Scholar 

  48. Kropinski, A.M., Sequence of the Genome of the Temperate, Serotype-Converting Pseudomonas aeruginosa Bacteriophage D3, J. Bacteriol., 2000, vol. 182, no. 21, pp. 6066-6074.

    Google Scholar 

  49. Cianciotto, N.P. and Groman, N.B., Characterization of Bacteriophages from tox-Containing, Non-Toxigenic Isolates of Corynebacterium diphtheriae, Microb. Pathog., 1997, vol. 22, no. 6, pp. 343-351.

    Google Scholar 

  50. Buck, G.A., Cross, R.E., Wong, T.P., et al., DNA Relationships among Some tox-Bearing Corynebacteriophages, Infect. Immunol., 1985, vol. 49, no. 3, pp. 679- 684.

    Google Scholar 

  51. Steinberg, V.I., Hart, E.J., Handley, J., and Goldberg, I.D., Isolation and Characterization of a Bacteriophage Specific for Neisseria perflava, J. Clin. Microbiol., 1976, vol. 4, no. 1, pp. 87-91.

    Google Scholar 

  52. Zhu, P., Morelli, G., and Achtman, M., The opcA and (psi)opcB Regions in Neisseria: Genes, Pseudogenes, Deletions, Insertion Elements and DNA Islands, Mol. Microbiol., 1999, vol. 33, no. 3, pp. 635-650.

    Google Scholar 

  53. Claus, H., Stoevesandt, J., Frosch, M., and Vogel, U., Genetic Isolation of Meningococci of the Electrophoretic Type 37 Complex, J. Bacteriol., 2001, vol. 183, no. 8, pp. 2570-2575.

    Google Scholar 

  54. Masignani, V., Giuliani, M.M., Tettelin, H., et al., Mulike Prophage in Serogroup B Neisseria meningitidis Coding for Surface-Exposed Antigens, Infect. Immunol., 2001, vol. 69, no. 4, pp. 2580-2588.

    Google Scholar 

  55. Provenzano, D. and Klose, K.E., Altered Expression of the ToxR-Regulated Porins OmpU and OmpT Diminishes Vibrio cholerae Bile Resistance, Virulence Factor Expression, and Intestinal Colonization, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 18, pp. 10220-10224.

    Google Scholar 

  56. Lazar, S. and Waldor, M.K., ToxR-Independent Expression of Cholera Toxin from the Replicative Form of CTXphi, Infect. Immunol., 1998, vol. 66, no. 1, pp. 394- 397.

    Google Scholar 

  57. Faruque, S.M., Asadulghani, Kamruzzaman, M., et al., RS1 Element of Vibrio cholerae Can Propagate Horizontally as a Filamentous Phage Exploiting the Morphogenesis Genes of CTXphi, Infect. Immunol., 2002, vol. 70, no. 1, pp. 163-170.

    Google Scholar 

  58. Faruque, S.M., Rahman, M.M., Asadulghani, et al., Lysogenic Conversion of Environmental Vibrio mimicus Strains by CTXPhi, Infect. Immunol., 1999, vol. 67, no. 11, pp. 5723-5729.

    Google Scholar 

  59. Boyd, E.F., Moyer, K.E., Shi, L., and Waldor, M.K., Infectious CTXPhi and the Vibrio Pathogenicity Island Prophage in Vibrio mimicus: Evidence for Recent Horizontal Transfer between V. mimicus and V. cholerae, Infect. Immunol., 2000, vol. 68, no. 3, pp. 1507-1513.

    Google Scholar 

  60. Mitra, S.N., Kar, S., Ghosh, R.K., et al., Presence of Lysogenic Phage in the Outbreak Strains of Vibrio cholerae O139, Med. Microbiol., 1995, vol. 42, no. 6, pp. 399- 403.

    Google Scholar 

  61. Mukhopadhyay, R. and Ghosh, R.K., Mechanism of Phage PS166-Mediated Biotype Conversion in Vibrio cholerae: Role of the hlyA Locus, Virology, 2000, vol. 20, no. 273, pp. 36-43.

    Google Scholar 

  62. Mitra, S.N., Mukhopadhyay, R., Ghosh, A.N., and Ghosh, R.K., Conversion of Vibrio eltor MAK757 to Classical Biotype: Role of Phage PS166, Virology, 2000, vol. 20, no. 273, pp. 44-51.

    Google Scholar 

  63. Jordi, B.J., Boutaga, K., van Heeswijk, C.M., et al., Sensitivity of Shiga Toxin-Producing Escherichia coli (STEC) Strains for Colicins under Different Experimental Conditions, FEMS Microbiol. Lett., 2001, vol. 204, pp. 29-34.

    Google Scholar 

  64. O'Brien, S.J., Adak, G.K., and Gilham, C., Contact with Farming Environment as a Major Risk Factor for Shiga Toxin (Verocytotoxin)-Producing Escherichia coli O157 Infection in Humans, Emerg. Infect. Dis., 2001, vol. 7, no. 6, pp. 1049-1051.

  65. Soltyk, A.M., MacKenzie, C.R., Wolski, V.M., et al., A Mutational Analysis of the Globotriaosylceramide-Binding Sites of Verotoxin VT1, J. Biol. Chem., 2002, vol. 277, no. 7, pp. 5351-5359.

    Google Scholar 

  66. Friedrich, A.W., Bielaszewska, M., Zhang, W.L., et al., Escherichia coli Harboring Shiga Toxin 2 Gene Variants: Frequency and Association with Clinical Symptoms, J. Infect. Dis., 2002, vol. 185, no. 1, pp. 74-84.

    Google Scholar 

  67. Hiruta, N., Murase, T., and Okamura, N., An Outbreak of Diarrhea Due to Multiple Antimicrobial-Resistant Shiga Toxin-Producing Escherichia coli O26: H11 in a Nursery, Epidemiol. Infect., 2001, vol. 127, no. 2, pp. 221-227.

    Google Scholar 

  68. Hayashi, T., Makino, K., Ohnishi, M., et al., Complete Genome Sequence of Enterohemorrhagic Escherichia coli O157: H7 and Genomic Comparison with a Laboratory Strain K-12, DNA Res., 2001, vol. 28, pp. 11-22 (for erratum, see DNA Res., 2001, vol. 27, p. 96).

    Google Scholar 

  69. Yokoyama, K., Makino, K., Kubota, Y., et al., Complete Nucleotide Sequence of the Prophage VT1-Sakai Carrying the Shiga Toxin 1 Genes of the Enterohemorrhagic Escherichia coli O157: H7 Strain Derived from the Sakai Outbreak, Gene, 2000, vol. 27, pp. 127-139.

    Google Scholar 

  70. Makino, K., Yokoyama, K., Kubota, Y., et al., Complete Nucleotide Sequence of the Prophage VT2-Sakai Carrying the Verotoxin 2 Genes of the Enterohemorrhagic Escherichia coli O157: H7 Derived from the Sakai Outbreak, Genes, Genet. Syst., 1999, vol. 74, no. 5, pp. 227- 239.

    Google Scholar 

  71. Plunkett, G. III, Rose, D.J., Durfee, T.J., and Blattner, F.R., Sequence of Shiga Toxin 2 Phage 933W from Escherichia coli O157:H7: Shiga Toxin as a Phage Late-Gene Product, J. Bacteriol., 1999, vol. 181, no. 6, pp. 1767- 1778.

    Google Scholar 

  72. Rybchin, V.N. and Svarchevsky, A.N., The Plasmid Prophage N15: A Linear DNA with Covalently Closed Ends, Mol. Microbiol., 1999, vol. 33, no. 5, pp. 895- 903.

    Google Scholar 

  73. Tomas, J.M. and Kay, W.W., Effect of Bacteriophage P1 Lysogeny on Lipopolysaccharide Composition and the ??Receptor of Escherichia coli, J. Bacteriol., 1984, vol. 159, pp. 1047-1052.

    Google Scholar 

  74. Vidal, O., Longin, R., Prigent-Combaret, C., et al., Isolation of an Escherichia coli K-12 Mutant Strain Able to Form Biofilms on Inert Surfaces: Involvement of a New ompR Allele That Increases Curli Expression, J. Bacteriol., 1998, vol. 180, no. 9, pp. 2442-2449.

    Google Scholar 

  75. Olsen, A., Wick, M.J., Morgelin, M., and Bjorck, L., Curli, Fibrous Surface Proteins of Escherichia coli, Interact with Major Histocompatibility Complex Class I Molecules, Infect. Immunol., 1998, vol. 66, pp. 944- 949.

    Google Scholar 

  76. Strauch, E., Lurz, R., and Beutin, L., Characterization of a Shiga Toxin-Encoding Temperate Bacteriophage of Shigella sonnei, Infect. Immunol., 2001, vol. 69, pp. 7588- 7595.

    Google Scholar 

  77. McDonough, M.A. and Butterton, J.R., Spontaneous Tandem Amplification and Deletion of the Shiga Toxin Operon in Shigella dysenteriae 1, Mol. Microbiol., 1999, vol. 34, no. 5, pp. 1058-1069.

    Google Scholar 

  78. Koch, C., Mertens, G., Rudt, F., et al., The Invertible G Segment, Phage Mu, Symonds, N., Toussaint, A., Van de Putte, P., and Howe, M.M., Eds., Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1987, pp. 75-91.

    Google Scholar 

  79. Tominaga, A., The Site-Specific Recombinase Encoded by pinD in Shigella dysenteriae Is Due to the Presence of a Defective Mu Prophage, Microbiology, 1997, vol. 143, pp. 2057-2063.

    Google Scholar 

  80. Adams, M.M., Allison, G.E., and Verma, N.K., Type IV O Antigen Modification Genes in the Genome of Shigella flexneri NCTC 8296, Microbiology, 2001, vol. 147, pp. 851-860.

    Google Scholar 

  81. Allison, G.E., Angeles, D., Tran-Dinh, N., and Verma, N.K., Complete Genomic Sequence of SfV, a Serotype-Converting Temperate Bacteriophage of Shigella flexneri, J. Bacteriol., 2002, vol. 184, pp. 1974-1987.

    Google Scholar 

  82. Figueroa-Bossi, N., Uzzau, S., Maloriol, D., and Bossi, L., Variable Assortment of Prophages Provides a Transferable Repertoire of Pathogenic Determinants in Salmonella, Mol. Microbiol., 2001, vol. 39, no. 2, pp. 260- 271.

    Google Scholar 

  83. Boyd, D.A., Peters, G.A., Ng, L., and Mulvey, M.R., Partial Characterization of a Genomic Island Associated with the Multidrug Resistance Region of Salmonella enterica typhimurium DT104, FEMS Microbiol. Lett., 2000, vol. 189, no. 2, pp. 285-291.

    Google Scholar 

  84. Vander Byl, C. and Kropinski, A.M., Sequence of the Genome of Salmonella Bacteriophage P22, J. Bacteriol., 2000, vol. 182, no. 22, pp. 6472-6481.

    Google Scholar 

  85. Pontarollo, R.A., Rioux, C.R., and Potter, A.A., Cloning and Characterization of Bacteriophage-like DNA from Haemophilus somnus Homologous to Phages P2 and HP1, J. Bacteriol., 1997, vol. 179, pp. 1872-1879.

    Google Scholar 

  86. Smoot, L.M., Franke, D.D., McGillivary, G., and Actis, L.A., Genomic Analysis of the F3031 Brazilian Purpuric Fever Clone of Haemophilus influenzae Biogroup aegyptius by PCR-Based Subtractive Hybridization, Infect. Immunol., 2002, vol. 70, no. 5, pp. 2694- 2699.

    Google Scholar 

  87. Morgan, G.J., Hatfull, G.F., Casjens, S., and Hendrix, R.W., Bacteriophage Mu Genome Sequence: Analysis and Comparison with Mu-like Prophages in Haemophilus, Neisseria and Deinococcus, J. Mol. Biol., 2002, vol. 29, pp. 337-359.

    Google Scholar 

  88. Eggers, C.H., Casjens, S., Hayes, S.F., et al., Bacteriophages of Spirochetes, J. Mol. Microbiol. Biotechnol., 2000, vol. 2, pp. 365-373.

    Google Scholar 

  89. Casjens, S., van Vugt, R., Tilly, K., et al., Homology throughout the Multiple 32-Kilobase Circular Plasmids Present in Lyme Disease Spirochetes, J. Bacteriol., 1997, vol. 179, no. 1, pp. 217-227.

    Google Scholar 

  90. Kobryn, K. and Chaconas, G., ResT, a Telomere Resolvase Encoded by the Lyme Disease Spirochete, Mol. Cell, 2002, vol. 9, no. 1, pp. 195-201.

    Google Scholar 

  91. Humphrey, S.B., Stanton, T.B., and Jensen, N.S., Mitomycin C Induction of Bacteriophages from Serpulina hyodysenteriae and Serpulina innocens, FEMS Microbiol. Lett., 1995, vol. 134, no. 1, pp. 97-101.

    Google Scholar 

  92. Banks, D.J., Beres, S.B., and Musser, J.M., The Fundamental Contribution of Phages to GAS Evolution, Genome Diversification and Strain Emergence, Trends Microbiol., 2002, vol. 10, no. 11, pp. 515-521.

    Google Scholar 

  93. Day, N.P., Moore, C.E., Enright, M.C., et al., A Link between Virulence and Ecological Abundance in Natural Populations of Staphylococcus aureus, Science, 2001, vol. 292, pp. 59-60.

    Google Scholar 

  94. Yamaguchi, T., Hayashi, T., and Takami, H., Phage Conversion of Exfoliative Toxin A Production in Staphylococcus aureus, Mol. Microbiol., 2000, vol. 38, no. 4, pp. 694-705.

    Google Scholar 

  95. Yoshizawa, Y., Sakurada, J., Sakurai, S., et al., An Exfoliative Toxin A-Converting Phage Isolated from Staphylococcus aureus Strain ZM, Microbiol. Immunol., 2000, vol. 44, no. 3, pp. 189-191.

    Google Scholar 

  96. Kaneko, J., Kimura, T., Kawakami, Y., et al., Panton-Valentine Leukocidin Genes in a Phage-like Particle Isolated from Mitomycin C-Treated Staphylococcus aureus V8 (ATCC 49775), Biosci. Biotechnol. Biochem., 1997, vol. 61, no. 11, pp. 1960-1962.

    Google Scholar 

  97. Narita, S., Kaneko, J., Chiba, J., et al., Phage Conversion of Panton-Valentine Leukocidin in Staphylococcus aureus: Molecular Analysis of a PVL-Converting Phage, &phi:SLT, Gene, 2001, vol. 268, nos. 1-2, pp. 195-206.

    Google Scholar 

  98. Wannamaker, L.W., Streptococcal Toxins, Rev. Infect. Dis., 1983, suppl. 4, pp. 723-732.

  99. Nida, S.K. and Ferretti, J.J., Phage Influence on the Synthesis of Extracellular Toxins in Group A Streptococci, Infect. Immunol., 1982, vol. 36, no. 2, pp. 745- 750.

    Google Scholar 

  100. Savel'eva, I.A., Suvorov, A.N., Nesterchuk, L.B., and Golubkov, V.I., Identification of the Erythrogenic Toxin A Gene in Strains of Group A Streptococcus, Vestn. Akad. Med. Nauk SSSR, 1989, no. 11, pp. 59-62.

  101. Yu, C.E. and Ferretti, J.J., Molecular Characterization of New Group A Streptococcal Bacteriophages Containing the Gene for Streptococcal Erythrogenic Toxin A (speA), Mol. Gen. Genet., 1991, vol. 231, no. 1, pp. 161- 168.

    Google Scholar 

  102. McShan, W.M. and Ferretti, J.J., Genetic Diversity in Temperate Bacteriophages of Streptococcus pyogenes: Identification of a Second Attachment Site for Phages Carrying the Erythrogenic Toxin A Gene, J. Bacteriol., 1997, vol. 179, pp. 6509-6511.

    Google Scholar 

  103. McShan, W.M., Tang, Y.F., and Ferretti, J.J., Bacteriophage T12 of Streptococcus pyogenes Integrates into the Gene Encoding a Serine tRNA, Mol. Microbiol., 1997, vol. 23, no. 4, pp. 719-728.

    Google Scholar 

  104. Goshorn, S.C. and Schlievert, P.M., Bacteriophage Association of Streptococcal Pyrogenic Exotoxin Type C, J. Bacteriol., 1989, vol. 171, no. 6, pp. 3068-3073.

    Google Scholar 

  105. Hynes, W.L. and Ferretti, J.J., Sequence Analysis and Expression in Escherichia coli of the Hyaluronidase Gene of Streptococcus pyogenes Bacteriophage H4489A, Infect. Immunol., 1989, vol. 57, no. 2, pp. 533-539.

    Google Scholar 

  106. Cleary, P.P., LaPenta, D., Vessela, R., et al., A Globally Disseminated M1 Subclone of Group A Streptococci Differs from Other Subclones by 70 Kilobases of Prophage DNA and Capacity for High-Frequency Intracellular Invasion, Infect. Immunol., 1998, vol. 66, no. 11, pp. 5592-5597.

    Google Scholar 

  107. Ferretti, J.J., McShan, W.M., Ajdic, D., et al., Complete Genome Sequence of an M1 Strain of Streptococcus pyogenes, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 8, pp. 4658-4663.

    Google Scholar 

  108. Desiere, F., McShan, W.M., van Sinderen, D., et al., Comparative Genomics Reveals Close Genetic Relationships between Phages from Dairy Bacterial and Pathogenic Streptococci: Evolutionary Implications for Prophage-Host Interactions, Virology, 2001, vol. 30, pp. 325-341.

    Google Scholar 

  109. Hariharan, H. and Mitchell, W.R., Observations on Bacteriophages of Clostridium botulinum Type C Isolates from Different Sources and the Role of Certain Phages in Toxigenicity, Appl. Environ. Microbiol., 1976, vol. 32, no. 1, pp. 145-158.

    Google Scholar 

  110. Perova, E.V., Tikhonenko, A.S., Bulatova, T.I., and Il'yashenko, B.N., Induction of a Bacteriophage in Cultures of Cl. botulinum Type A, Zh. Mikrobiol., Epidemiol., Immunobiol., 1977, no. 11, pp. 125-128.

    Google Scholar 

  111. Zhou, Y., Sugiyama, H., and Johnson, E.A., Transfer of Neurotoxigenicity from Clostridium butyricum to a Nontoxigenic Clostridium botulinum Type E-like Strain, Appl. Environ. Microbiol., 1993, vol. 59, no. 11, pp. 3825-3832.

    Google Scholar 

  112. Schallehn, G., Eklund, M.W., and Brandis, H., Phage Conversion of Clostridium novyi Type A, Zentralbl. Bakteriol. A, 1980, vol. 247, no. 1, pp. 95-100.

    Google Scholar 

  113. Mebel, S. and Lapaeva, I., Conversion of Bordetella parapertussis Serovar through Lysogeny Produced by Pertussis Phages, Zentralbl. Bakteriol. Mikrobiol. Hyg., A, 1982, vol. 252, no. 4, pp. 547-556.

    Google Scholar 

  114. Lapaeva, I.A., Mebel, S.M., Sinyashina, L.N., and Shakhvatova, O.Yu., Toxicogenicity Conversion in Bordetella parapertussis by Pertussis Phages, Zh. Mikrobiol., Epidemiol., Immunobiol., 1982, no. 9, pp. 60-64.

    Google Scholar 

  115. Sinyashina, L.N., Lapaeva, I.A., and Mebel, S.M., Characterization of the Major Biological Properties of Bordetella Bacteriophages, Zh. Mikrobiol., Epidemiol., Immunobiol., 1982, no. 8, pp. 66-69.

    Google Scholar 

  116. Gol'tsmaier, T.A., Karataev, G.I., Rozinov, M.N., et al., Lysogeny and Conversion Properties of Microorganisms of the Genus Bordetella, Zh. Mikrobiol., Epidemiol., Immunobiol., 1987, no. 5, pp. 9-13.

  117. Hozmayer, T.A., Karataev, G.I., Rozinov, M.N., et al., Bacteriophages of Bordetella sp.: Features of Lysogeny and Conversion, Zentralbl. Bakteriol. Mikrobiol. Hyg., A, 1988, vol. 269, no. 2, pp. 147-155.

    Google Scholar 

  118. Mebel, S., Lapaeva, I.A., Sinyashina, L.N., et al., Changes within the Genus Bordetella Influenced by Phages, Dev. Biol. Stand., 1985, vol. 61, pp. 281-288.

    Google Scholar 

  119. Shelton, C.B., Crosslin, D.R., Casey, J.L., et al., Discovery, Purification, and Characterization of a Temperate Transducing Bacteriophage for Bordetella avium, J. Bacteriol., 2000, vol. 182, no. 21, pp. 6130-6136.

    Google Scholar 

  120. Kot, B., Bukowski, K., Jakubczak, A., and Kaczorek, I., The Activity of Chosen Bacteriophages on Yersinia enterocolitica Strains, Pol. J. Vet. Sci., 2002, vol. 5, no. 1, pp. 47-50.

    Google Scholar 

  121. Popp, A., Hertwig, S., Lurz, R., and Appel, B., Comparative Study of Temperate Bacteriophages Isolated from Yersinia, Syst. Appl. Microbiol., 2000, vol. 23, no. 4, pp. 469-478.

    Google Scholar 

  122. Pajunen, M.I., Kiljunen, S.J., Soderholm, M.E., and Skurnik, M., Complete Genomic Sequence of the Lytic Bacteriophage PhiYeO3-12 of Yersinia enterocolitica Serotype O:3, J. Bacteriol., 2001, vol. 183, no. 6, pp. 1928-1937.

    Google Scholar 

  123. Buchrieser, C., Rusniok, C., Frangeul, L., et al., The 102-Kilobase pgm Locus of Yersinia pestis: Sequence Analysis and Comparison of Selected Regions among Different Yersinia pestis and Yersinia pseudotuberculosis Strains, Infect. Immunol., 1999, vol. 67, no. 9, pp. 4851-4861.

    Google Scholar 

  124. Faruque, S.M., Asadulghani, Rahman, M.M., et al., Sunlight-Induced Propagation of the Lysogenic Phage Encoding Cholera Toxin, Infect. Immunol., 2000, vol. 68, no. 8, pp. 4795-4801.

    Google Scholar 

  125. Zhang, X., McDaniel, A.D., Wolf, L.E., et al., Quinolone Antibiotics Induce Shiga Toxin-Encoding Bacteriophages, Toxin Production, and Death in Mice, J. Infect. Dis., 2000, vol. 181, no. 2, pp. 664-670.

    Google Scholar 

  126. Wagner, P.L., Neely, M.N., Zhang, X., et al., Role for a Phage Promoter in Shiga Toxin 2 Expression from a Pathogenic Escherichia coli Strain, J. Bacteriol., 2001, vol. 183, no. 6, pp. 2081-2085.

    Google Scholar 

  127. Willi, K., Sandmeier, H., Asikainen, S., et al., Occurrence of Temperate Bacteriophages in Different Actinobacillus actinomycetemcomitans Serotypes Isolated from Periodontally Healthy Individuals, Oral Microbiol. Immunol., 1997, vol. 12, no. 1, pp. 40-46.

    Google Scholar 

  128. Read, T.D., Satola, S.W., and Farley, M.M., Nucleotide Sequence Analysis of Hypervariable Junctions of Haemophilus influenzae Pilus Gene Clusters, Infect. Immunol., 2000, vol. 68, no. 12, pp. 6896-6902.

    Google Scholar 

  129. Brosch, R., Gordon, S.V., Marmiesse, M., et al., A New Evolutionary Scenario for the Mycobacterium tuberculosis Complex, Proc. Natl. Acad. Sci. USA, 2002, vol. 19, pp. 3684-3689.

    Google Scholar 

  130. Mysyanzhinov, V.V., Robben, J., Grymonprez, B., et al., The Genome of Bacteriophage ?KZ of Pseudomonas aeruginosa, J. Mol. Biol., 2002, vol. 317, pp. 1-19.

    Google Scholar 

  131. Bergmann, B., Raffelsbauer, D., Kuhn, M., et al., InlAbut Not InlB-Mediated Internalization of Listeria monocytogenes by Non-Phagocytic Mammalian Cells Needs the Support of Other Internalins, Mol. Microbiol., 2002, vol. 43, no. 3, pp. 557-570.

    Google Scholar 

  132. Bourkaltseva, M.V., Krylov, V.N., Pleteneva, E.A., et al., Phenogenetic Characterization of a Group of Giant ?KZ-like Bacteriophages of Pseudomonas aeruginosa, Genetika (Moscow), 2002, vol. 38, no. 11, pp. 1242- 1250.

    Google Scholar 

  133. Rubin, E.J., Akerley, B.J., Novick, V.N., et al., In vivo Transposition of mariner-Based Elements in Enteric Bacteria and Mycobacteria, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 4, pp. 1645-1650.

    Google Scholar 

  134. Goyard, S., Tosi, L.R., Gouzova, J., et al., New Mos1 mariner Transposons Suitable for the Recovery of Gene Fusions in Vivo and in Vitro, Gene, 2001, vol. 12, pp. 97-105.

    Google Scholar 

  135. Waters, V.L., Conjugation between Bacterial and Mammalian Cells, Nat. Genet., 2001, vol. 29, no. 4, pp. 375- 376.

    Google Scholar 

  136. Coenye, T., Falsen, E., Hoste, B., et al., Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov., Int. J. Syst. Evol. Microbilol., 2000, vol. 50, no. 2, pp. 887-899.

    Google Scholar 

  137. Coenye, T., Goris, J., Spilker, T., et al., Characterization of Unusual Bacteria Isolated from Respiratory Secretions of Cystic Fibrosis Patients and Description of Inquilinus limosus gen. nov., sp. nov., J. Clin. Microbiol., 2002, vol. 40, no. 6, pp. 2062-2069.

    Google Scholar 

  138. Neish, A.S., The Gut Microflora and Intestinal Epithelial Cells: A Continuing Dialogue, Microbes Infect., 2002, vol. 4, no. 3, pp. 309-317.

    Google Scholar 

  139. Ochsner, U.A. and Vasil, M.L., Gene Repression by the Ferric Uptake Regulator in Pseudomonas aeruginosa: Cycle Selection of Iron-Regulated Genes, Proc. Natl. Acad. Sci. USA, 1996, vol. 30, pp. 93-99.

    Google Scholar 

  140. Ji, Y., Marra, A., Rosenberg, M., and Woodnutt, G., Regulated Antisense RNA Eliminates ?-Toxin Virulence in Staphylococcus aureus Infection, J. Bacteriol., 1999, vol. 181, pp. 6585-6590.

    Google Scholar 

  141. Riehle, M.M., Bennet, A.F., and Long, A.D., Genetic Architecture of Thermal Adaptation in Escherichia coli, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 525-530.

    Google Scholar 

  142. Yanai, I., Wolf, Y.I., and Koonin, E.V., Evolution of Gene Fusions: Horizontal Transfer versus Independent Events, Genome Biol., 2002, vol. 3, no. 24, pp. 1-13.

    Google Scholar 

  143. Groisman, E.A. and Casadaban, M.J., Mini-Mu Bacteriophage with Plasmid Replicons for in vivo Cloning and lac Gene Fusing, J. Bacteriol., 1986, vol. 168, no. 1, pp. 357-364.

    Google Scholar 

  144. Cheetham, B.F. and Katz, M.E., A Role for Bacteriophages in the Evolution and Transfer of Bacterial Virulence Determinants, Mol. Microbiol., 1995, vol. 18, no. 2, pp. 201-208.

    Google Scholar 

  145. Hiramatsu, K., Cui, L., Kuroda, M., and Ito, T., The Emergence and Evolution of Methicillin-Resistant Staphylococcus aureus, Trends Microbiol., 2001, vol. 9, no. 10, pp. 486-493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, V.N. The Role of Horizontal Gene Transfer by Bacteriophages in the Origin of Pathogenic Bacteria. Russian Journal of Genetics 39, 483–504 (2003). https://doi.org/10.1023/A:1023775431880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023775431880

Keywords

Navigation