Skip to main content
Log in

Consequences of Adrenalectomy on Small Intestine Trophic Parameters in Aged and Young Rats: Evidence of Defective Adaptation by Aging and Lack of Corticoids

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Previous study pointed to an important role of adrenals and glucocorticoids in the trophic status of the adult small intestine mucosa, with possible implications during stress events. Small intestine morphological and biochemical consequences of 10-day bilateral adrenalectomy and also sham-related laparotomy were determined in 23-month-old Sprague-Dawley rats. As described in young rats, adrenalectomy in old rats leads to partial atrophy and disorganization of the proximal small intestine epithelium, with an increase in the number of Paneth cells and reduced crypt cell proliferation. We also observed a decrease of goblet cell number and a reduction of all enzyme activities including disaccharidases, in contrast with the specific induced response shown in young rats. A number of marked biochemical effects have also been noted in aged rats subjected to solely laparotomy, suggesting age-related adaptation impairments. In conclusion, adrenalectomy modified the differentiation processes of the small intestinal mucosa in both young and aged rats, and some parameters underlined that the lack of corticoid-mediated adaptive process are exacerbated by cumulative surgical stress (event) and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dowling RH: Small bowel adaptation and its regulation. Scand J Gastroenterol 74:53-74, 1982

    Google Scholar 

  2. Jones MK, Tomikawa M, Mohajer B, Tarnawski AS: Gastrointestinal mucosal regeneration: role of growth factors. Front Biosci 4:D303-D309, 1999

    Google Scholar 

  3. Anup R, Balasubramanian KA: Surgical stress and the gastrointestinal tract. J Surg Res 92:291-300, 2000

    Google Scholar 

  4. Jeschke MG, Debroy MA, Wolf SE, Rajaraman S, Thompson JC: Burn and starvation increase programmed cell death in small bowel epithelial cells. Dig Dis Sci 45:415-420, 2000

    Google Scholar 

  5. Holt PR, Tierney AR, Kotler DP: Delayed enzyme expression: a defect of aging rat gut. Gastroenterology 89:1026-1034, 1985

    Google Scholar 

  6. Sapolsky RM: Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol 34:721-732, 1999

    Google Scholar 

  7. Sapolsky RM, Romero LM, Munck AU: How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrinol Rev 21:55-89, 2000

    Google Scholar 

  8. Quaroni A, Tian JQ, Goke M, Podolsky DK: Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am J Physiol 277:G1027-G1040, 1999

    Google Scholar 

  9. Foligne B, Aissaoui S, Senegas-Balas F, Cayuela C, Bernard P, Antoine JM, Balas D: Changes in cell proliferation and differentiation of adult rat small intestine epithelium after adrenalectomy: kinetic, biochemical, and morphological studies. Dig Dis Sci 46:1236-1246, 2001

    Google Scholar 

  10. Pacheco I, Otaka M, Jin M, Sasahara H, Iwabuchi A, Odashima M, Konishi N, Wada I, Masamune O, Watanabe S: Corticosteroid pretreatment prevents small intestinal mucosal lesion induced by acetic acid-perfusion model in rats. Dig Dis Sci 45:2337-2346, 2000

    Google Scholar 

  11. Spitz JC, Ghandi S, Taveras M, Aoys E, Alverdy JC: Characteristics of the intestinal epithelial barrier during dietary manipulation and glucocorticoid stress. Crit Care Med 24:635-641, 1996

    Google Scholar 

  12. Hohn P, Gabbert H, Wagner R: Differentiation and aging of the rat intestinal mucosa. II. Morphological, enzyme histochemical and disc electrophoretic aspects of the aging of the small intestinal mucosa. Mech Ageing Dev 7:217-226, 1978

    Google Scholar 

  13. Penzes L: Intestinal response in aging: changes in reserve capacity. Acta Med Hung 41:263-277, 1984

    Google Scholar 

  14. Balas D, Sénégas-Balas F, Vellas B, Moreau J, Bertrand C, Ribet A: Trophic variations of rat small intestine during aging. Age Nutr 1:80-87, 1990

    Google Scholar 

  15. Raul F, Schleiffer R: Intestinal adaptation to nutritional stress. Proc Nutr Soc 55:279-289, 1996

    Google Scholar 

  16. Fadrique B, Lopez JM, Bermudez R, Gomez de Segura IA, Vazquez I, De Miguel E: Growth hormone plus high protein diet promotes adaptation after massive bowel resection in aged rats. Exp Gerontol 36:1727-1737, 2001

    Google Scholar 

  17. Stewart J, Meaney MJ, Aitken D, Jensen L, Kalant N: The effects of acute and life-long food restriction on basal and stress-induced serum corticosterone levels in young and aged rats. Endocrinology 123:1934-1941, 1988

    Google Scholar 

  18. Odio MR, Brodish A: Glucoregulatory responses of adult and aged rats after exposure to chronic stress. Exp Gerontol 25:159-172, 1990

    Google Scholar 

  19. Sonntag WE, Lynch CD, Cefalu WT, Ingram RL, Bennett SA, Thornton PL, Khan AS: Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. J Gerontol A Biol Sci Med Sci 54:B521-B538, 1999

    Google Scholar 

  20. Turner JR, Liu L, Fligiel SE, Jaszewski R, Majumdar AP: Aging alters gastric mucosal responses to epidermal growth factor and transforming growth factor-alpha. Am J Physiol Gastrointest Liver Physiol 278:G805-G810, 2000

    Google Scholar 

  21. Jang I, Chae K, Cho J: Effects of age and strain on small intestinal and hepatic antioxidant defense enzymes in Wistar and Fischer 344 rats. Mech Ageing Dev 122:561-570, 2001

    Google Scholar 

  22. Russell RM: Changes in gastrointestinal function attributed to aging. Am J Clin Nutr 55:1203S-1207S, 1992

    Google Scholar 

  23. Majumdar AP, Jaszewski R, Dubick MA: Effect of aging on the gastrointestinal tract and the pancreas. Proc Soc Exp Biol Med 215:134-144, 1997

    Google Scholar 

  24. Lee MF, Russell RM, Montgomery RK, Krasinski SD: Total intestinal lactase and sucrase activities are reduced in aged rats. J Nutr 127:1382-1387, 1997

    Google Scholar 

  25. Jang I, Jung K, Cho J: Influence of age on duodenal brush border membrane and specific activities of brush border membrane enzymes in Wistar rats. Exp Anim 49:281-287, 2000

    Google Scholar 

  26. Bernard A, Caselli C, Blond JP, Carlier H: Diet fatty acid composition, age and rat jejunal microvillus enzyme activities. Comp Biochem Physiol Comp Physiol 101:607-612, 1992

    Google Scholar 

  27. Ferraris RP, Vinnakota RR: Regulation of intestinal nutrient transport is impaired in aged mice. J Nutr 123:502-511, 1993

    Google Scholar 

  28. Wood RJ, Fleet JC, Cashman K, Bruns ME, Deluca HF: Intestinal calcium absorption in the aged rat: evidence of intestinal resistance to 1,25(OH)2 vitamin D. Endocrinology 139:3843-3848, 1998

    Google Scholar 

  29. Teillet L, Tacnet F, Ripoche P, Corman B: Effect of aging on zinc and histidine transport across rat intestinal brush-border membranes. Mech Ageing Dev 79:151-167, 1995

    Google Scholar 

  30. Kapcala LP, Chautard T, Eskay RL: The protective role of the hypothalamic—pituitary—adrenal axis against lethality produced by immune, infectious, and inflammatory stress. Ann NY Acad Sci 771:419-437, 1995

    Google Scholar 

  31. Filaterova LP, Filaterov AA, Makara GB: Corticosterone increase inhibits stress-induced gastric erosions in rats. Am J Physiol 274:G1024-G1030, 1998

    Google Scholar 

  32. Saito M: Daily rhythmic changes in brush border enzymes of the small intestine and kidney in rat. Biochim Biophys Acta 286:212-215, 1972

    Google Scholar 

  33. Al-Nafussi AI, Wright NA: Circadian rhythm in the rate of cellular proliferation and in the size of the functional compartment of mouse jejunal epithelium. Virchows Arch B Cell Pathol Incl Mol Pathol 40:71-79, 1982

    Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275, 1951

    Google Scholar 

  35. Garen A, Levintal C: A fine structure, genetic and chemical study of the enzyme alkaline phosphatase of E. coli. Biochem Biophys Acta 38:470-477, 1960

    Google Scholar 

  36. Maroux S, Louvard D, Baratti J: The amino-peptidase from hog intestinal brush-border. Biochem Biophys Acta 321:282-295, 1973

    Google Scholar 

  37. Dahlqvist A: Method for assay of intestinal disaccharidases. Anal Biochem 7:18, 1964

    Google Scholar 

  38. Koldovsky O, Asp NG, Dahlqvist A: A method for separate assay of neutral and acid B-galactosidase in homogenates of rat small-intestinal mucosa. Anal Biochem 27:409-417, 1969

    Google Scholar 

  39. Balas D, Senegas-Balas F, Pradayrol L, Vayssette J, Bertrand C, Ribet A: Long-term comparative effect of CCK and gastrin on mouse stomach, antrum, intestine and exocrine pancreas. Am J Anat 174:27-43, 1985

    Google Scholar 

  40. Windford-Thomas D, Williams E: Use of bromodeoxyuridine for cell kinetic studies in intact animals. Cell Tissue Kinet 19:179-182, 1986

    Google Scholar 

  41. O'Brien DP, Nelson LA, Huang FS, Warner BW; Intestinal adaptation: structure, function, and regulation. Semin Pediatr Surg 10:56-64, 2001

    Google Scholar 

  42. Hernandez G, Velasco N, Wainstein C, Castillo L, Bugedo G, Maiz A, Lopez F, Guzman S, Vargas C: Gut mucosal atrophy after a short enteral fasting period in critically ill patients. J Crit Care 14:73-77, 1999

    Google Scholar 

  43. Anup R, Aparna V, Pulimood A, Balasubramanian KA: Surgical stress and the small intestine: role of oxygen free radicals. Surgery 125:560-569, 1999

    Google Scholar 

  44. Alpers DH: How adaptable is the intestine in patients with short-bowel syndrome? Am J Clin Nutr 75:787-788, 2002

    Google Scholar 

  45. Miller MJ, Zhang XJ, Sadowska-Krowicka H, Chotinaruemol S, McIntyre JA, Clark DA, Bustamante SA: Nitric oxide release in response to gut injury. Scand J Gastroenterol 28:149-154, 1993

    Google Scholar 

  46. Kawabata A, Kuroda R, Nishikawa H, Asai T, Kataoka K, Taneda M: Enhancement of vascular permeability by specific activation of protease-activated receptor-1 in rat hindpaw: a protective role of endogenous and exogenous nitric oxide. Br J Pharmacol 126:1856-1862, 1999

    Google Scholar 

  47. Chyun JH, Griminger P: Improvement of nitrogen retention by arginine and glycine supplementation and its relation to collagen synthesis in traumatized mature and aged rats. J Nutr 114:1697-1704, 1984

    Google Scholar 

  48. Ersin S, Tuncyurek P, Esassolak M, Alkanat M, Buke C, Yilmaz M, Telefoncu A, Kose T: The prophylactic and therapeutic effects of glutamine-and arginine-enriched diets on radiation-induced enterities in rats. J Surg Res 89:121-125, 2000

    Google Scholar 

  49. Yoshinaga K, Ishizuka J, Townsend CM Jr, Thompson JC: Age-related changes in duodenal adaptation after distal small bowel resection in rat. Dig Dis Sci 38:410-416, 1993

    Google Scholar 

  50. Preedy VR, Paska L, Sugden PH, Schofield PS, Sugden MC: The effects of surgical stress and short-term fasting on protein synthesis in vivo in diverse tissues of the mature rat. Biochem J 250:179-188, 1988

    Google Scholar 

  51. Lopez-Hellin J, Garcia-Arumi E, Farriol M, Arbos MA, Andreu AL, Schwartz S: Modification of organ protein synthesis after surgical stress by low energy diets with different lipid/glucose ratios. Physiol Res 46:187-191, 1997

    Google Scholar 

  52. Marway JS, Anderson GJ, Miell JP, Ross R, Grimble GK, Bonner AB, Gibbons WA, Peters TJ, Preedy VR: Application of proton NMR spectroscopy to measurement of whole-body RNA degradation rates: effects of surgical stress in human patients. Clin Chim Acta 252:123-135, 1996

    Google Scholar 

  53. Iavich MP, Rozhitskaia II, Golubeva LIu, Meerson FZ: The effect of surgical stress on DNA synthesis in liver and brain cells. Vopr Med Khim 36:8-11, 1990

    Google Scholar 

  54. Holt PP, Kotler DP: Adaptive changes of intestinal enzymes to nutritional intake in the aging rat. Gastroenterology 93:295-300, 1987

    Google Scholar 

  55. Galluser M, Belkhou R, Freund JN, Duluc I, Torp N, Danielsen M, Raul F: Adaptation of intestinal hydrolases to starvation in rats: effect of thyroid function. J Comp Physiol (B) 161:357-361, 1991

    Google Scholar 

  56. Hodin RA, Chamberlain SM, Meng S: Pattern of rat intestinal brush-border enzyme gene expression changes with epithelial growth state. Am J Physiol 269:C385-C391, 1995

    Google Scholar 

  57. McNeill LK, Hamilton JR: The effect of fasting on disaccharidase activity in the rat small intestine. Pediatrics 47:65-72, 1971

    Google Scholar 

  58. Gastaldi G, Casirola D, Marchetti C, Ferrari G: Adrenal cortex hormones and small intestine of adult rat: morphology, purity and enzymatic activities of isolated microvillous vesicles. Basic Appl Histochem 28:381-389, 1984

    Google Scholar 

  59. Duluc I, Jost B, Freund JN: Multiple levels of control of the stage-and region-specific expression of rat intestinal lactase. J Cell Biol 123:1577-1586, 1993

    Google Scholar 

  60. Goda T, Yasutake H, Tanaka T, Takase S: Lactase-phlorizin hydrolase and sucrase-isomaltase genes are expressed differently along the villus—crypt axis of rat jejunum. J Nutr 129:1107-1113, 1999

    Google Scholar 

  61. Freund J-N, Duluc I, Raul F: Lactase expression is controlled differently in the jejunum and ileum during development in rats. Gastroenterology 100:388-394, 1991

    Google Scholar 

  62. Yeh KY, Yeh M, Pan PC, Holt PR: Posttranslational cleavage of rat intestinal lactase occurs at the luminal side of the brush border membrane. Gastroenterology 101:312-318, 1991

    Google Scholar 

  63. Suh E, Traber PG: An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol 16:619-625, 1996

    Google Scholar 

  64. Troelsen JT, Mitchelmore C, Spodsberg N, Jensen AM, Noren O, Sjostrom H: Regulation of lactase-phlorizin hydrolase gene expression by the caudal-related homoeodomain protein Cdx-2. Biochem J 322:833-838, 1997

    Google Scholar 

  65. Mallo GV, Soubeyran P, Lissitzky JC, Andre F, Farnarier C, Marvaldi J, Dagorn JC, Iovanna JL: Expression of the Cdxl and Cdx2 homeotic genes leads to reduced malignancy in colon cancer-derived cells. J Biol Chem 273:14030-14036, 1998

    Google Scholar 

  66. Westcarr S, Farshori P, Wyche J, Anderson WA: Apoptosis and differentiation in the crypt-villus unit of the rat small intestine. J Submicrosc Cytol Pathol 31:15-30, 1999

    Google Scholar 

  67. Soubeyran P, Andre F, Lissitzky JC, Mallo GV, Moucadel V, Roccabianca M, Rechreche H, Marvaldi J, Dikic I, Dagorn JC, Iovanna JL: Cdx1 promotes differetiation in a rat intestinal epithelial cell line. Gastroenterology 117:1326-1338, 1999

    Google Scholar 

  68. Meng S, Badrinarain J, Sibley E, Fang R, Hodin R: Thyroid hormone and the d-type cyclins interact in regulating enterocyte gene transcription. J Gastrointest Surg 5:49-55, 2001

    Google Scholar 

  69. Evers BM, Izukura M, Townsend CM Jr, Uchida T, Thompson JC: Neurotensin prevents intestinal mucosal hypoplasia in rats fed an elemental diet. Dig Dis Sci 37:426-431, 1992

    Google Scholar 

  70. Farges MC, Raul F, Cezard JP, Davot P, Meunier MT, Cynober L, Vasson MP: A pancreatic extract-enriched diet corrects ilea mucosa atrophy in endotoxemic aged rats. Dig Dis Sci 43:2244-2250, 1998

    Google Scholar 

  71. Johnson LR, Tseng CC, Wang P, Tipnis UR, Haddox MK: Mucosal ornithine decarboxylase in the small intestine: localization and stimulation. Am J Physiol 256:G624-G630, 1989

    Google Scholar 

  72. Yabana T, Yachi A: Stress-induced vascular damage and ulcer. Dig Dis Sci 33:751-761 1988

    Google Scholar 

  73. Hori T, Wanibuchi H, Yano Y, Otani S, Nishikawa A, Osugi H, Kinoshita H, Fukushima S: Epithelial cell proliferation in the digestive tract induced by space restriction and water-immersion stress. Cancer Lett 125:141-148, 1998

    Google Scholar 

  74. Szabo S, Gallagher GT, Horner HC, Frankel PW, Underwood RH, Konture SJ, Brzozowski T, Trier JS: Role of the adrenal cortex in gastric mucosal protection by prostaglandins, sulfhydryls, and cimetidine in the rat. Gastroenterology 85:1384-1390, 1983

    Google Scholar 

  75. Takeuchi K, Nishiwaki H, Okada M, Niida H, Okabe S: Bilateral adrenalectomy worsens gastic mucosal lesions induced by indomethacin in the rat. Role of enhanced gastric motility. Gastroenterology 97:284-293, 1989

    Google Scholar 

  76. Lee Y, Mollison KW: Studies on restraint induced ulcer in rat. In Experimental Ulcer. T Gheorghiul (ed). Cologne, Germany, Editor, 1975, pp 52-57

    Google Scholar 

  77. Redei E, Pare WP, Aird F, Kluczynski J: Strain differences in hypothalamic—pituitary—adrenal activity and stress ulcer. Am J Physiol 266:R353-R360, 1994

    Google Scholar 

  78. Nicoloff DM, Peter ED, Leonard AS, Wangensteen OH: Catecholamines in ulcer provocation: their possible role in stress ulcer formation. JAMA 191:383-385, 1965

    Google Scholar 

  79. Toth T: An unusual stress-induced gastric lesion. Acta Physiol Hung 73:203-206, 1989

    Google Scholar 

  80. Marti O, Marti J, Armario A: Effects of chronic stress on food intake in rats: influence of stressor intensity and duration of daily exposure. Physiol Behav 55:747-753, 1994

    Google Scholar 

  81. Santos J, Benjamin M, Yang PC, Peror T, Perdue MH: Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells. Am J Physiol 278:G847-G854, 2000

    Google Scholar 

  82. Chrousos GP: Ultradian, circadian, and stress-related hypothalamic—pituitary—adrenal axis activity: a dynamic digital-to-analog modulation. Endocrinology 139:437-440, 1998

    Google Scholar 

  83. Cournil I, Lafon P, Juaneda C, Ciofi P, Fournier MC, Sarrieau A, Tramu G: Glucocorticosteroids up-regulate the expression of cholecystokinin mRNA in the rat paraventricular nucleus. Brain Res 877:412-423, 2000

    Google Scholar 

  84. Ahren B, Jarhult J, Lundquist I: Influence of the sympatho-adrenal system and somatostatin on the secretion of insulin in the rat. J Physiol 312:563-575, 1981

    Google Scholar 

  85. Gauthier C, El-Tayeb K, Vranic M, Lickley HL: Glucoregulatory role of cortisol and epinephrine interactions studied in adrenalectomized dogs. Am J Physiol 250:E393-E401, 1986

    Google Scholar 

  86. Gloria H, Portela-Gomes M, Grimelius L, Ahlman H, Ferra MA: Effects of adrenalectomy on serotonin-, and gastrin-immunoreactive cells in rat gastrointestinal tract. Dig Dis Sci 42:1216-1220, 1997

    Google Scholar 

  87. Zakrzewska KE, Cusin I, Sainsbury A, Rohner-Jeanrenaud F, Jeanrenaud B: Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance. Diabetes 46:717-719, 1997

    Google Scholar 

  88. Solano JM, Jacobson L: Glucocorticoids reverse leptin effects on food intake and body fat in mice without increasing NPY mRNA. Am J Physiol 277:E708-E716, 1999

    Google Scholar 

  89. Edens NK, Moshirfar A, Potter GM, Fried SK, Castonguay TW: Adrenalectomy reduces adiposity by decreasing food efficiency, not direct effects on white adipose tissue. Obes Res 7:395-401, 1999

    Google Scholar 

  90. Ogier H, Munnich A, Lyonnet S, Vaulont S, Reach G, Kahn A: Dietary and hormonal regulation of L-type pyruvate kinase gene expression in rat small intestine. Eur J Biochem 166:365-370, 1987

    Google Scholar 

  91. Seno H, Sawada M, Fukuzawa H, Morita Y, Takaishi S, Hiai H, Chiba T: Enhanced expression of transforming growth factor (TGF)-α precursor and TGF-β1 during Paneth cell regeneration. Dig Dis Sci 46:1004-1010, 2001

    Google Scholar 

  92. Ouellette AJ: Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 113:1779-1784, 1997

    Google Scholar 

  93. Porter EM, Bevins CL, Ghosh D, Ganz T: The multifaceted Paneth cell. Cell Mol Life Sci 59:156-170, 2002

    Google Scholar 

  94. Itoh H, Beck PL, Inoue N, Xavier R, Podolsky DK: Goblet cells make more than mucus: a paradoxical reduction in susceptibility to colonic injury upon targeted transgenic ablation of goblet cells. J Clin Invest 104:1539-1547, 1999

    Google Scholar 

  95. Xian CJ, Howarth GS, Mardell CE, Cool JC, Familari M, Read LC, Giraud AS: Temporal changes in TFF3 expression and jejunal morphology during methotrexate-induced damage and repair. Am J Physiol 277:G785-G795, 1999

    Google Scholar 

  96. Verburg M, Renes IB, Meijer HP, Taminiau JA, Buller HA, Einerhand AW, Dekker J: Selective sparing of goblet cells and Paneth cells in the intestine of methotrexate-treated rats. Am J Physiol Gastrointest Liver Physiol 279:G1037-G1047, 2000

    Google Scholar 

  97. Miner TJ, Tavaf-Motamen H, Stojadinovic A, Shea-Donohue T: Ischemia—reperfusion protects the rat small intestine against subsequent injury. J Surg Res 82:1-10, 1999

    Google Scholar 

  98. Pfeiffer CJ, Qiu B, Lam SK: Reduction of colonic mucus by repeated short-term stress enhances experimental colitis in rats. J Physiol Paris 95:81-87, 2001

    Google Scholar 

  99. Sakamoto K, Hirose H, Onizuka A, Hayashi M, Futamura N, Kawamura Y, Ezaki T: Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J Surg Res 94:99-106, 2000

    Google Scholar 

  100. Sapolsky R, Armanini M, Packan D, Tombaugh G: Stress and glucocorticoids in aging. Endocrinol Metab Clin North Am 16:965-980, 1987

    Google Scholar 

  101. Stewart J, Meaney MJ, Aitken D, Jensen L, Kalant N: The effects of acute and life-long food restriction on basal and stress-induced serum corticosterone levels in young and aged rats. Endocrinology 123:1934-1941, 1988

    Google Scholar 

  102. Visser DT, Hu Z, Pasterkamp RJ, Morimoto M, Kawata M: The alteration of glucocorticoid receptor-immunoreactivity in the rat forebrain following short-term and long-term adrenalectomy. Brain Res 729:216-222, 1996

    Google Scholar 

  103. Kanemasa H, Ozawa H, Konishi H, Ito T, Nishi M, Mitsufuji S, Kodama T, Hattori T, Kawata M: Distribution of glucocorticoid receptor immunoreactivity in gastric mucosa of normal and adrenalectomized rats. Dig Dis Sci 44:2081-2087, 1999

    Google Scholar 

  104. Ljungmann K, Grofte T, Kissmeyer-Nielsen P, Flyvbjerg A, Vilstrup H, Tygstrup N, Laurberg S: GH decreases hepatic amino acid degradation after small bowel resection in rats without enhancing bowel adaptation. Am J Physiol Gastrointest Liver Physiol 279:G700-G706, 2000

    Google Scholar 

  105. Stern LE, Erwin CR, O'Brien DP, Huang F, Warner BW: Epidermal growth factor is critical for intestinal adaptation following small bowel resection. Microsc Res Tech 51:138-148, 2000

    Google Scholar 

  106. Kritchevsky D: Caloric restriction and cancer. J Nutr Sci Vitaminol 47:13-19, 2001

    Google Scholar 

  107. Hu Y, Cardounel A, Gursoy E, Anderson P, Kalimi M: Anti-stress effects of dehydroepiandrosterone: protection of rats against repeated immobilization stress-induced weight loss, glucocorticoid receptor production, and lipid peroxidation. Biochem Pharmacol 59:753-762, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foligne, B., Senegas-Balas, F., Cursio, R. et al. Consequences of Adrenalectomy on Small Intestine Trophic Parameters in Aged and Young Rats: Evidence of Defective Adaptation by Aging and Lack of Corticoids. Dig Dis Sci 48, 1147–1158 (2003). https://doi.org/10.1023/A:1023733216568

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023733216568

Navigation