Skip to main content
Log in

Thermodynamic Properties of Intermediate Ni–P Phases (26–32.5 at. % P) between 971 and 1440 K

  • Published:
Inorganic Materials Aims and scope

Abstract

The vapor composition over and thermodynamic properties of crystalline nickel–phosphorus alloys (26–32.5 at. % P) are studied by Knudsen cell mass spectrometry between 971 and 1440 K. Mass spectra of the saturated vapor in the Ni–P system indicate the presence of the Ni+, P+ 2, and P+ ions. The P concentration in the vapor phase does not exceed 1% of the Р2 concentration. The experimental data are used to evaluate the complete set of thermodynamic functions of nickel phosphides. Based on the data for the low-temperature (α, γ) and high-temperature (β, δ) forms of Ni5P2 and Ni12P5 , the thermodynamic characteristics of the corresponding polymorphic transformations are evaluated. The results obtained for a large number of compositions under different experimental conditions (different effusion-cell and coating materials and effusion-orifice diameters) coincide to within the experimental error and are in good agreement with earlier reported phase-equilibrium data and enthalpies of formation, attesting to the high accuracy and reliability of the calculated thermodynamic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wachtel, E., Bakonyi, I., Wllman, N., et al., Magnetic Susceptibility and DSC Study of the Crystallization of Melt-Quenched Ni-P Amorphous Alloys, Mater.Sci.Eng., A, 1991, vol.133, pp.196-199.

    Google Scholar 

  2. Weibke, F.and Schrag, R., Die Bildungswarmen der Niederen Phosphide einiger Schwermetalle, Z.Elektrochem., 1941, vol.47, no.3, pp.222-238.

    Google Scholar 

  3. Myers, C.E.and Conti, T.G., Vaporization Behavior, Phase Equilibria, and Thermodynamic Stabilities of Nickel Phosphides, J.Electrochem.Soc., 1985, vol.132, no.2, pp.454-457.

    Google Scholar 

  4. Boone, S.and Kleppa, O.J., Determination of the Standard Enthalpy of Formation of Ni 2.55 P by High-Temperature Drop Calorimetry, J.Chem.Thermodyn., 1991, vol.23, pp.781-790.

    Google Scholar 

  5. Viksman, G.Sh.and Gordienko, S.P., High-Temperature Behavior of Nickel Phosphide in Vacuum and Its Thermodynamic Characteristics, Poroshk.Metall. (Kiev), 1992, no.12, pp.70-72.

    Google Scholar 

  6. Zaitsev, A.I., Zemchenko, M.A., and Mogutnov, B.M., Vapor Pressure of Iron, Zh.Fiz.Khim., 1990, vol.64, no.12, p.3377.

    Google Scholar 

  7. Zaitsev, A.I., Shelkova, N.E., Litvina, A.D., et al., Vaporization Behavior of Liquid Iron-Copper Alloys, Teplofiz.Vys.Temp., 2001, vol.39, no.3, pp.416-423.

    Google Scholar 

  8. Zaitsev, A.I., Zemchenko, M.A., and Mogutnov, B.M., Thermodynamic Properties of Manganese Silicides, Zh.Fiz.Khim., 1989, vol.63, no.6, pp.1451-1458.

    Google Scholar 

  9. Zaitsev, A.I., Dobrokhotova, Zh.V., Litvina, A.D., and Mogutnov, B.M., Thermodynamic Properties and Phase Equilibrium in the Fe-P System, J.Chem.Soc., Faraday Trans., 1995, vol.93, no.4, pp.703-712.

    Google Scholar 

  10. Zaitsev, A.I., Korolyov, N.V., and Mogutnov, B.M., Thermodynamic Properties of {x Ca + (1 - x )P}, J.Chem.Thermodyn., 1991, vol.23, pp.11-23.

    Google Scholar 

  11. Zaitsev, A.I., Korolyov, N.V., and Mogutnov, B.M., The Vapour Pressures and the Heats of Sublimation of CaF 2 and SrF 2, High Temp.Sci., 1990, vol.28, p.341.

    Google Scholar 

  12. Sidorov, L.N., Korobov, M.V., and Zhuravleva, L.V., Mass-spektral'nye termodinamicheskie issledovaniya (Mass Spectrometric Thermodynamic Studies), Moscow: Mosk.Gos.Univ., 1985.

    Google Scholar 

  13. Mann, J.B., Recent Development in Mass-Spectroscopy, Proc.Int.Conf.on Mass Spectroscopy, Tokyo, 1970, p.814.

  14. Zaitsev, A.I.and Zaitseva, N.E., High-Temperature Vapor Pressure of Nickel, Teplofiz.Vys.Temp., 2002, vol.40, no.2, pp.225-230.

    Google Scholar 

  15. Karakaya, I.and Thompson, W.T., The Ag-P (Argentum- Phosphorus) System, Bull.Alloy Phase Diagrams, 1988, vol.9, no.3, p.232.

    Google Scholar 

  16. Dinsdale, A.T., SGTE Data for Pure Elements, CALPHAD: Comput.Coupling Phase Diagrams Thermochem., 1991, vol.15, no.4, p.317.

    Google Scholar 

  17. Lee, K.J.and Nash, P., Phase Diagrams of Binary Nickel Alloys, Nash, P., Ed., Materials Park: ASM International, 1991, pp.235-246.

  18. Shim., J.-H., Chung, H.-J., and Lee, D.N., Calculation of Phase Equilibria and Evaluation of Glass-Forming Ability of Ni-P Alloys, J.Alloys Compd., 1999, vol.282, pp.175-181.

    Google Scholar 

  19. Yurko, L.M., Svirid, A.A., and Muchnik, S.V., Phase Equilibria in the Systems Nickel-Phosphorus and Nickel-Phosphorus-Carbon, Poroshk.Metall. (Kiev), 1986, no.9, pp.78-83.

  20. JANAF Thermochemical Tables, 2nd ed., J.Phys.Chem.Ref.Data, 1985, vol.14.

  21. Lu, K., Luck, R., and Predel, B., Investigation of the Heat Capacities of Ni-20 at.% P in Different States, Z.Metallkd., 1993, vol.84, no.11, pp.740-743.

    Google Scholar 

  22. Lu, K., Wang, J.T., and Wei, W.D., Thermal Expansion and Specific Heat Capacity of Nanocrystalline Ni-P Alloy, Scr.Metall.Mater., 1991, vol.25, pp.619-623.

    Google Scholar 

  23. Jacobs, R.B., Chem.Phys., 1937, vol.5, p.945.

    Google Scholar 

  24. O'Hare, P.A.G.and Hubbard, W.N., J.Chem.Soc., Faraday Trans., 1966, vol.62, p.2709.

  25. Zaitsev, A.I., Zemchenko, M.A., and Mogutnov, B.M., Thermodynamic Properties of Mn-P Alloys, Z.Metallkd., 1993, vol.84, no.3, pp.178-184.

    Google Scholar 

  26. Gel'd, P.V.and Sidorenko, F.A., Silitsidy perekhodnykh metallov chetvertogo perioda (3 d Transition Metal Silicides), Moscow: Metallurgiya, 1971.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A.I., Zaitseva, N.E. & Shakhpazov, E.K. Thermodynamic Properties of Intermediate Ni–P Phases (26–32.5 at. % P) between 971 and 1440 K. Inorganic Materials 39, 427–432 (2003). https://doi.org/10.1023/A:1023643721556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023643721556

Keywords

Navigation