Skip to main content
Log in

Selective Production of Hydrogen for Fuel Cells Via Oxidative Steam Reforming of Methanol Over CuZnAl Oxide Catalysts: Effect of Substitution of Zirconium and Cerium on the Catalytic Performance

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

H2 fuel, for fuel cells, is traditionally produced from methanol by the endothermic steam reforming of methanol (SRM). Partial oxidation of methanol (POM), which is highly exothermic, has also been suggested as a route to extract H2 from methanol. In both these reactions a considerable amount of CO is produced as a byproduct, which is a poison to the Pt anode of the fuel cell. A combined steam reforming and partial oxidation of methanol, which has been termed “oxidative steam reforming of methanol” (OSRM), reported recently is considered to be more efficient and convenient for the selective production of H2 at a relatively low temperature. The catalysts used in the OSRM reaction were CuZnAl mixed oxides derived from hydroxycarbonate precursors containing hydrotalcite (HT)-like layered double hydroxides (LDHs)/aurichalcite phases. Substitution of Zr for Al in the CuZnAl oxide system was found to improve the catalytic performance. In the present study, the role of added Zr was investigated in detail by employing spectroscopic methods such as X-ray diffraction (XRD), temperature-programmed reduction (TPR), electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (AES). The detailed spectroscopic studies revealed that substitution of Zr for Al improved the reducibility and dispersion of copper species due to the operation of a synergistic interaction between copper and zirconium as a consequence of the formation of a “Cu2+-O-Zr4+-O-” solid solution. The higher catalytic performance of CuZn-based catalysts containing Zr in the OSRM reaction was attributed to the ease of reducibility and enhanced dispersion of copper particles on the support. The substitution of Ce in the CuZnAl system, on the other hand, did not alter the catalytic performance greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-H. Cheng and H.H. Kung, Methanol Production and Use (Marcel Dekker, New York, 1994) p. 1.

    Google Scholar 

  2. W.-H. Cheng, Acc. Chem. Res. 32 (1999) 685.

    Google Scholar 

  3. Y. Matsumura, K. Kagawa, Y. Usami, M. Kawazoe, H. Sakurai and M. Haruta, Chem. Commun. (1997) 657.

  4. L. Alejo, R. Lago, M.A. Pena and J.L.G. Fierro, Appl. Catal. A: General 162 (1997) 281.

    Google Scholar 

  5. J.P. Breen and J.R.H. Ross, Catal. Today 51 (1999) 521.

    Google Scholar 

  6. Y. Matsumura, K. Tanaka, N. Tode, T. Yazawa and M. Haruta, J. Mol. Catal. A: Chemical 152 (2000) 157.

    Google Scholar 

  7. Y. Liu, K. Suzuki, S. Hamakawa, T. Hayakawa, K. Murata, T. Ishii and M. Kumagai, Chem. Lett. (2000) 486.

  8. S. Velu, K. Suzuki and T. Osaki, Chem. Commun. (1999) 2341.

  9. S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki and F. Ohashi, J. Catal. 194 (2000) 373.

    Google Scholar 

  10. S. Velu, K. Suzuki and T. Osaki, Catal. Lett. 69 (2000) 43.

    Google Scholar 

  11. S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi and T. Osaki, Appl. Catal. A: General 213 (2001) 47.

    Google Scholar 

  12. I.A. Fisher and A.T. Bell, J. Catal. 184 (1999) 357.

    Google Scholar 

  13. A. Martinez-Arias, R. Cataluna, J.C. Conesa and J. Soria, J. Phys. Chem. B 102 (1998) 809.

    Google Scholar 

  14. S. Velu, K. Suzuki and T. Osaki, Catal. Lett. 62 (1999) 159.

    Google Scholar 

  15. J.F. Scholten and A. van Montfoort, J. Catal. 1 (1962) 85.

    Google Scholar 

  16. G. Centi, S. Perathoner, D. Bigleno and E. Giamello, J. Catal. 151 (1995) 75.

    Google Scholar 

  17. W. Dow, Y. Wang and T. Huang, J. Catal. 160 (1996) 155.

    Google Scholar 

  18. E. Giamello, B. Fubini and P. Lauro, Appl. Catal. 21 (1986) 133.

    Google Scholar 

  19. H. Praliand, S. Mikhailenko, Z. Chajar and M. Primet, Appl. Catal. B: Environmental 16 (1998) 359.

    Google Scholar 

  20. I. Grohmann, B. Peplinski and W. Unger, Surf. Interf. Anal. 19 (1992) 591.

    Google Scholar 

  21. G. Moretti, G. Fierro, M.L. Jacono and P. Porta, Surf. Interf. Anal. 14 (1989) 325.

    Google Scholar 

  22. P. Porta, M.C. Campa, G. Fierro, M.L. Jacono, G. Minelli, G. Moretti and L. Stoppa, J. Mater. Chem. 3 (1993) 505.

    Google Scholar 

  23. S. Ardizzone and C.L. Bianchi, Surf. Interf. Anal. 30 (2000) 77.

    Google Scholar 

  24. J.J. Yeh and I. Lindau, I. At. Data Nucl. Data Tables 32 (1985) 1.

    Google Scholar 

  25. S.V. Didziulis, K.D. Butcher, S.L. Cohen and E.I. Solomon, J. Am. Chem. Soc. 111 (1989) 7110.

    Google Scholar 

  26. J. Lin, P. Jones, J. Guckert and E.I. Solomon, J. Am. Chem. Soc. 113 (1991) 8312.

    Google Scholar 

  27. A. Martinez-Arias, J. Soria, R. Cataluña, J.C. Conesa and V. Cortés Corberan, Stud. Surf. Sci. Catal. 116 (1998) 591.

    Google Scholar 

  28. M. Fernandez-Garcia, A. Martinez-Arias, A. Iglesias-Juez, C. Belver, A.B. Hungria, J.C. Conesa and J. Soria, J. Catal. 194 (2000) 385.

    Google Scholar 

  29. M. Daturi, E. Finocchio, C. Binet, J. Lavalley, F. Fally, V. Perrichon, H. Vidal, N. Hickey and J. Kaspar, J. Phys. Chem. B 104 (2000) 9186.

    Google Scholar 

  30. L. Kundakovic and M. Flytzani-Stephanopoulos, J. Catal. 179 (1998) 203.

    Google Scholar 

  31. A. Martinez-Arias, M. Fernandez-Garcia, O. Galrez, J.M. Coranado, J.A. Anderso, J.C. Conesa, J. Soria and G. Munuera, J. Catal. 195 (2000) 207.

    Google Scholar 

  32. R.T. Figueiredo, A. Martinez-Arias, M.L. Granados and J.L.G. Fierro, J. Catal. 178 (1998) 146.

    Google Scholar 

  33. S. Velu, K. Suzuki, C.S. Gopinath, H. Yoshida and T. Hattori, Phys. Chem. Chem. Phys. 4 (2002) 1990.

    Google Scholar 

  34. G. Fierro, M.L. Jacono, M. Inversi, P. Prta, F. Cioci and R. Lavecchia, Appl. Catal. A: General 137 (1996) 327.

    Google Scholar 

  35. J.P. Breen, F.C. Meunier and J.R.H. Ross, Chem. Commun. 2247 (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velu, S., Suzuki, K. Selective Production of Hydrogen for Fuel Cells Via Oxidative Steam Reforming of Methanol Over CuZnAl Oxide Catalysts: Effect of Substitution of Zirconium and Cerium on the Catalytic Performance. Topics in Catalysis 22, 235–244 (2003). https://doi.org/10.1023/A:1023576020120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023576020120

Navigation