Skip to main content
Log in

Low-Temperature Methanol Synthesis in Catalytic Systems Composed of Copper-Based Oxides and Alkali Alkoxides in Liquid Media: Effects of Reaction Variables on Catalytic Performance

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic systems composed of copper-based oxides and alkali alkoxides are tested for low-temperature methanol synthesis in liquid phases, which involves carbonylation of methanol to methyl formate and consecutive hydrogenation of methyl formate to methanol. The effects of reaction variables on the catalytic performance are investigated under the conditions of 373-423K temperature and 1.5-5.0 Mpa pressure. The combined catalytic systems of copper chromite and potassium methoxide exhibit excellent activities for the production of methanol. Higher values of reaction temperature, initial pressure, catalyst loading, and H2/CO ratio of the feed gas lead to higher methanol productivity. In particular, the reaction temperatures and the feed gas compositions strongly influence the catalytic performance. No methanol is formed when employing a feed gas containing 2% CO2. The catalytic systems are deactivated in a short period even in a CO2-free feed gas, due to the consumption of the alkoxide component. Alkali alkoxides are consumed through reactions with trace amounts of CO2 and H2O which are formed as by-products during the course of the runs. The results also suggest that the hydrogenation step of methyl formate over copper chromite is greatly accelerated in the presence of the alkali alkoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Trimm and M.S. Wainwright, Catal. Today 6 (1990) 261.

    Google Scholar 

  2. M. Marchionna, in: Oxygenates by Homologation or CO Hydrogenation with Metal Complexes, ed. G. Braca (Kluwer Academic Publishers, Dordrecht, 1994) p. 57.

    Google Scholar 

  3. S. Ohyama, PETROTECH 18 (1995) 27.

    Google Scholar 

  4. S. Ohyama, Stud. Surf. Sci. Catal. 130 (2000) 3753.

    Google Scholar 

  5. R.S. Sapienza, W.A. Slegeir, T.E. O'Hare and D. Mahajan, US Patent 4 614 749 (1986).

  6. R.S. Sapienza, W.A. Slegeir, T.E. O'Hare and D. Mahajan, US Patent 4 619 946 (1986).

  7. R.S. Sapienza, W.A. Slegeir, T.E. O'Hare and D. Mahajan, US Patent 4 623 634 (1986).

  8. H. Nakamura, K. Saeki and M. Tanaka, Jpn. Patent 88/51129 (1988).

  9. S.T. Sie, E. Drent and W.W. Jager, US Patent 4 812 433 (1989).

  10. M. Marchionna, M. Lami, F. Ancillotti and R. Ricci, Ital. Patent 20028/A (1988).

  11. M. Marchionna, L. Basini, A. Aragno, M. Lami and F. Ancillotti, J. Mol. Catal. 75 (1992) 147.

    Google Scholar 

  12. S. Ohyama, Appl. Catal. A 180 (1999) 217.

    Google Scholar 

  13. S. Ohyama, Appl. Catal. A 181 (1999) 87.

    Google Scholar 

  14. O.T. Onsager, Jpn. Patent 87/500867 (1987).

  15. O.T. Onsager, Jpn. Patent 91/12048 (1991).

  16. Z. Liu, J.W. Tierney, Y.T. Shah and I. Wender, Fuel Process. Tech. 18 (1988) 185.

    Google Scholar 

  17. Z. Liu, J.W. Tierney, Y.T. Shah and I. Wender, Fuel Process. Tech. 23 (1989) 149.

    Google Scholar 

  18. V.M. Palekar, H. Jung, J.W. Tierney and I. Wender, Appl. Catal. A 102 (1993) 13.

    Google Scholar 

  19. V.M. Palekar, J.W. Tierney and I. Wender, Appl. Catal. A 103 (1993) 105.

    Google Scholar 

  20. S.P. Tonner, D.L. Trimm, M.S. Wainwright and N.W. Cant, J. Mol. Catal. 18 (1983) 215.

    Google Scholar 

  21. I. Wender, Catal. Rev. Sci. Eng. 26 (1984) 303.

    Google Scholar 

  22. D.J. Darensbourg, R.L. Gray and C. Ovalles, J. Mol. Catal. 29 (1985) 285.

    Google Scholar 

  23. D.J. Darensbourg, R.L. Gray and C. Ovalles, J. Mol. Catal. 41 (1987) 329.

    Google Scholar 

  24. R.J. Gormley, A.M. Giusti, S. Rossini and V.U.S. Rao, 9th Int. Congr. Catal. 2 (1988) 553.

    Google Scholar 

  25. P.Å. Sørum and O.T. Onsager, 8th Int. Congr. Catal. 2 (1984) 233.

    Google Scholar 

  26. K.M. Kim, H.C. Woo, M. Cheong, J.C. Kim, K.H. Lee, J.S. Lee and Y.G. Kim, Appl. Catal. A 83 (1992) 15.

    Google Scholar 

  27. D.M. Monti, M.A. Kohler, M.S. Wainwright, D.L. Trimm and N.W. Cant, Appl. Catal. 22 (1986) 123.

    Google Scholar 

  28. S.P. Tonner, D.L. Trimm and M.S. Wainwright, Ind. Eng. Prod. Res. Dev. 23 (1984) 384.

    Google Scholar 

  29. R.J. Gormley, V.U.S. Rao, Y. Soong and E. Micheli, Appl. Catal. A 87 (1992) 81.

    Google Scholar 

  30. D.M. Monti, M.S. Wainwright, D.L. Trimm and N.W. Cant, Ind. Eng. Chem. Prod. Res. Dev. 24 (1985) 397.

    Google Scholar 

  31. D.M. Monti, N.W. Cant, D.L. Trimm and M.S. Wainwright, J. Catal. 100 (1986) 17.

    Google Scholar 

  32. D.M. Monti, N.W. Cant, D.L. Trimm and M.S. Wainwright, J. Catal. 100 (1986) 28.

    Google Scholar 

  33. J.A. Christiansen, U.S. Patent 1 302 011 (1919).

  34. M. Imaizumi, in: Shokubai Koza Vol. 8, ed. Catalysis Society of Japan (Kodansha Scientific), Tokyo, 1985) p. 3.

  35. S. Ohyama and H. Kishida, Appl. Catal. A 172 (1998) 241.

    Google Scholar 

  36. S. Ohyama and H. Kishida, Stud. Surf. Sci. Catal. 121 (1999) 431.

    Google Scholar 

  37. S. Ohyama and H. Kishida, Appl. Catal. A 184 (1999) 239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohyama, S. Low-Temperature Methanol Synthesis in Catalytic Systems Composed of Copper-Based Oxides and Alkali Alkoxides in Liquid Media: Effects of Reaction Variables on Catalytic Performance. Topics in Catalysis 22, 337–343 (2003). https://doi.org/10.1023/A:1023500725571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023500725571

Navigation