Skip to main content
Log in

Nitric Acid-Oxidized Carbon for the Preparation of Esters Under Ultrasonic Activation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Temperature-programmed desorption, X-ray photoelectron spectroscopy (XPS) spectroscopy and catalytic test reaction have been applied to investigate acid sites in a microporous activated carbon (Norit RX 1 Extra). Treatment with HNO3 generates acid sites in the pristine carbon. XPS data show an increase of the amount of carboxyl and hydroxyl groups on the activated carbon surface. The thermodesorption profiles of the material corroborate the XPS data and indicate the presence of hydroxyl groups of carboxylic acids. The results obtained by these methods indicate the presence of acid sites. Thus, the acidity of the carbon was tested in the esterification of organic acids with alcohols. The pristine carbon presents no activity. By contrast, the treated carbon presents enough acidity to carry out the reaction achieving conversion values of around 45% for the reaction of benzoic acid with ethanol in a batch reactor. Such a value increases if the reaction is carried out under ultrasound activation, affording conversion values of around 85%. The selectivity of the reactions is high, around 95%. Only in the case of 1-octanol are some side-products observed, due to the oxidation of the alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hattori. Appl. Catal. A: Gen. 222 (2001) 247.

    Google Scholar 

  2. A. Nakamura and M. Tsutsui, in: Principles and Applications of Homogeneous Catalysis (Wiley, New York, 1980).

    Google Scholar 

  3. J. Weitkamp, M. Hunger and U. Rymsa, Micropor. Mesopor. Mater. 48 (2001) 255.

    Google Scholar 

  4. K. Tanabe and W. F. Holderich, Appl. Catal. A: Gen. 181 (1999) 339.

    Google Scholar 

  5. M. J. Verhoef, P. J. Kooyman, J. A. Peters and H. Van Bekkum, Micropor. Mater. 27 (1999) 11.

    Google Scholar 

  6. M. A. Schwegler, H. Van Bekkum and N. A. de Munck, Appl. Catal. 74 (1991) 191.

    Google Scholar 

  7. J. Lilja, D. Yu. Murzin, T. Salmi, J. Aumo, P. Maki-Arvela and M. Sundell, J. Mol. Catal. A: Chem. 182–183 (2002) 555.

    Google Scholar 

  8. M. C. Marziano, L. Ronchin, C. Tortato, A. Zingales and A. A. Sheikh-Osman, J. Mol. Cat. A: Chem. 174 (2001) 265.

    Google Scholar 

  9. A. Mitsutani, Catal. Today 73 (2002) 57.

    Google Scholar 

  10. W. F. Holderich and G. Hetmann, Catal. Today 38 (1997) 227.

    Google Scholar 

  11. A. Corma and H. García, Catal. Today 38 (1997) 257.

    Google Scholar 

  12. T. J. Pinnavaia, M. S. Tzou and S. D. Landau, J. Am. Chem. Soc. 107 (1995) 4783.

    Google Scholar 

  13. Z. Hu and M. P. Srinivasan, Micropor. Mater. 27 (1999) 11.

    Google Scholar 

  14. J. de D. López-Gonzalez, A. J. López-Peinado, R. M. Martín-Aranda and M. L. Rojas-Cervantes, Carbon 31 (1993) 1231.

    Google Scholar 

  15. A. W. Heinen, J. A. Peters, H. Van Bekkum, Carbohydr. Res. 330 (2001) 381.

    Google Scholar 

  16. L. R. Radovic and F. Rodríguez-Reinoso, in: Chemistry and Physics of Carbon, Vol. 25, ed. P. A. Thrower (Marcel Dekker, New York, 1997) p. 243.

    Google Scholar 

  17. R. M. Martín-Aranda, M. L. Rojas-Cervantes, A. J. López-Peinado and J. de D. López-Gonzalez, J. Mol. Catal. 85 (1993) 253.

    Google Scholar 

  18. L. H. Thompson and L. K. Doraiswamy, Ind. Eng. Chem. Res. 38 (1999) 1215.

    Google Scholar 

  19. T. J. Mason, NATO ASI Ser. C. 524 (1999) 377.

    Google Scholar 

  20. D. D. Do and R. G. Rice, Chem. Eng. Sci. 42 (1987) 2269.

    Google Scholar 

  21. E. Papirer, J. Dentzer, S. Li and J. B. Donnet, Carbon 29 (1990) 69.

    Google Scholar 

  22. I. Bautista-Toledo, J. Rivera-Utrilla, M. A. Ferro-García and C. Moreno-Castilla, Carbon 32 (1994) 93.

    Google Scholar 

  23. Y. Otake and R. G. Jenkins, Carbon 31 (1993) 109.

    Google Scholar 

  24. M. M. Dubinin and L. V. Radushkevich, Proc. Acad. Sci. USSR 55 (1947) 331.

    Google Scholar 

  25. H. P. Boehm, Adv. Catal. 16 (1966) 198.

    Google Scholar 

  26. J. Garrido, A. Linares-Solano, J. M. Martín-Martínez, M. Molina-Sabio, F. Rodriguez-Reinoso and R. Torregrosa, Langmuir 3 (1987) 76.

    Google Scholar 

  27. C. Moreno-Castilla, M. A. Ferro-García, J. P. Joly, I. Bautista-Toledo, F. Carrasco-Marin and J. Rivera-Utrilla, Langmuir 11 (1995) 4386.

    Google Scholar 

  28. P. Vinke, M. Van der Eijk, M. Verbree, F. Voskamp and H. Van Bekkum, Carbon 32 (1994) 675.

    Google Scholar 

  29. C. U. Pittman Jr, G. R. He, B. Wu and S. D. Gardiner, Carbon 35 (1997) 317.

    Google Scholar 

  30. E. Desimoni, G. I. Casella, A. Morone and A. M. Salvi, Surf. Interf. Anal. 15 (1990) 627.

    Google Scholar 

  31. U. Zielke, K. J. Huttinger and W. P. Hoffman, Carbon 34 (1996) 1983.

    Google Scholar 

  32. J. S. Mattson and H. B. Mark, in: Activated Carbon, Surface Chemistry and Adsorption from Solution (Marcel Dekker, New York, 1971).

    Google Scholar 

  33. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (Wiley, New York, 1988).

    Google Scholar 

  34. D. Cazorla-Amoros, A. Linares-Solano, J. P. Joly and C. Salinas-Martinez de Lecea, Catal. Today 9 (1991) 219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevskaia, D., Martín-Aranda, R. Nitric Acid-Oxidized Carbon for the Preparation of Esters Under Ultrasonic Activation. Catalysis Letters 87, 143–147 (2003). https://doi.org/10.1023/A:1023487005083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023487005083

Navigation