Skip to main content
Log in

Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Previous research suggests that the endogenous synthesis of gamma-aminobutyrate (GABA), a naturally occurring inhibitory neurotransmitter, serves as a plant defense mechanism against invertebrate pests. Here, we tested the hypothesis that elevated GABA levels in engineered tobacco confer resistance to the northern root nematode (Meloidogyne hapla). This nematode species was chosen because of its sedentary nature and economic importance in Canada. We derived nine phenotypically normal, homozygous lines of transgenic tobacco (Nicotiana tabacum L.), which contain one or two copies of a full-length, chimeric tobacco glutamate decarboxylase (GAD) cDNA or a mutant version that lacks the autoinhibitory calmodulin-binding domain, under the control of a chimeric octopine synthase/mannopine synthase promoter. Regardless of experimental protocol, uninfected transgenic lines consistently contained higher GABA concentrations than wild-type controls. Growth chamber trials revealed that 9–12 weeks after inoculation of tobacco transplants with the northern root-knot nematode, mature plants of five lines possessed significantly fewer egg masses on the root surface when the data were expressed on both root and root fresh weight bases. Therefore, it can be concluded that constitutive transgenic expression of GAD conferred resistance against the root-knot nematode in phenotypically normal tobacco plants, probably via a GABA-based mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akama K., Akihiro T., Kitagawa M. and Takaiwa F. 2001. Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim. Biophys. Acta. 1522: 143–150.

    Google Scholar 

  • Anonymous 2000. Statistix 7 for Windows. Analytical Software, Tallahassee, FL, USA.

  • Arazi T., Baum G., Snedden W.A., Shelp B.J. and Fromm H. 1995. Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol. 108: 551–561.

    Google Scholar 

  • Atkinson H.J., Lilley C.J., Urwin P.E. and McPherson M.J. 1998. Engineering resistance to plant parasitic nematodes. In: Perry R.N. and Wright D.J. (eds), The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes. CAB International, Wallingford, UK, pp. 381–413.

    Google Scholar 

  • Atkinson H.J., Urwin P.E., Hansen E. and McPherson M.J. 1995. Designs for engineered resistance to root-parasitic nematodes. Tr. Biotech. 13: 369–374.

    Google Scholar 

  • Barker K.R. 1985. Nematode extraction and bioassays. In: Barker K.R., Carter C.C. and Sasser J.N. (eds), An Advanced Treatise on Meloidogyne, Methodoloy. Vol. 2. North Carolina State University Graphics, Raleigh, NC, USA, pp. 19–35.

    Google Scholar 

  • Barker K.R. 1998. Introduction and synopsis of advancements in nematology. In: Plant and Nematode Interactions, Agronomy Monogr 36. Amer Soc Agronomy, Madison, WI, USA, pp. 1–20.

    Google Scholar 

  • Baum G., Chen Y., Arazi T., Takatsuji H. and Fromm H. 1993. A plant glutamate decarboxylase containing a calmodulin-binding domain. J. Biol. Chem. 268: 19610–19617.

    Google Scholar 

  • Baum G., Lev-Yadun S., Fridman Y., Arazi T., Katsnelson H., Zik M. et al. 1996. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J. 15: 2988–2996.

    Google Scholar 

  • Beck E., Kudwig G., Auerswald E.A., Reiss B. and Schaller H. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336.

    Google Scholar 

  • Bown A.W., Hall D.E. and MacGregor K.B. 2002. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol. 129: 1430–1434.

    Google Scholar 

  • Bown A.W. and Shelp B.J. 1997. The metabolism and physiological roles of γ-aminobutyric acid. Plant Physiol. 115: 1–5.

    Google Scholar 

  • Bridge J. 1996. Nematode management in sustainable and subsistence agriculture. Annu. Rev. Phytopathol. 34: 201–225.

    Google Scholar 

  • Casida J.E. 1993. Insecticide action at the GABA-gated chloride channel: recognition, progress, and prospects. Arch. Insect Biochem. Physiol. 22: 13–23.

    Google Scholar 

  • Cooper J.R., Bloom F.E. and Roth R.H. 1982. The Biochemical Basis of Neuropharmacology. 4th edn. Oxford University Press, UK.

    Google Scholar 

  • Del Castillo J., De Mello W.C. and Morales T. 1964. Inhibitory action of γ-aminobutyric acid (GABA) on Ascaris muscle. Experientia 20: 141–143.

    Google Scholar 

  • Depicker A., Stachel S., Dhaese P., Zambryski P. and Goodman H.M. 1982. Nopaline synthase: transcript mapping and DNA sequence. J. Mol. Appl. Genet. 1: 561–573.

    Google Scholar 

  • Ferris J.M. and Ferris V.R. 1998. Biology of plant-parasitic nematodes. In: Plant and Nematode Interactions, Agronomy Monogr 36. Amer Soc Agronomy, Madison, WI, USA, pp. 21–35.

    Google Scholar 

  • Frisch D.A., Harris-Haller L.W., Yokubaitis N.T., Thomas T.L., Hardin S.H. and Hall T.C. 1995. Complete sequence of the binary vector Bin 19. Plant Mol. Biol. 27: 405–409.

    Google Scholar 

  • Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G. and Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Google Scholar 

  • Irving S.N., Osborne M.P. and Wilson R.G. 1976. Virtual absence of L-glutamate from the the haemoplasm of arthropod blood. Science 263: 431–433.

    Google Scholar 

  • Irving S.N., Osborne M.P. and Wilson R.G. 1979. Studies on Lglutamate in insect haemolymph. Physiol. Entomol. 4: 139–146.

    Google Scholar 

  • Jung C. and Wyss U. 1999. New approaches to control plant parasitic nematodes. Appl. Microbiol. Biotechnol. 51: 439–446.

    Google Scholar 

  • Kinnersley A.M. and Turano F. 2000. Gamma aminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 19: 479–509.

    Google Scholar 

  • Krakowsky J.M., Boissey R.E., Neumann J.C. and Lingrel J.B. 1993. A DNA insertional mutation results in microphthalmia in transgenic mice. Transgenic Res. 2: 14–20.

    Google Scholar 

  • Kuriyama K. and Sze P.Y. 1971. Blood-brain barrier to H3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacol. 10: 103–108.

    Google Scholar 

  • Lyznik L.A., Rao K.V. and Hodges T.K. 1996. FLP-mediated recombination of FRT sites in the maize genome. Nucl. Acids Res. 24: 3784–3789.

    Google Scholar 

  • Ma S.-W., Zhao D.-L., Yin Z.-Q., Mukherjee R., Singh B., Qin H.-Y. et al. 1997. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nature Med. 3: 793–796.

    Google Scholar 

  • Marcotte M. and Tibelius C. 1998. Improving Food and Agriculture Productivity and the Environment: Canadian Initiatives in Methyl Bromide Alternatives and Emission Control Technologies. Environment Canada, Ottawa, ON, Canada.

    Google Scholar 

  • Ni M., Cui D., Einstein J., Narasimhulu S., Vergara C.E. and Gelvin S.B. 1995. Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J. 7: 661–676.

    Google Scholar 

  • Niebel A., Gheysen G. and Van Montagu M. 1994. Plant-cyst and plant-root-knot nematode interactions. Parasitol. Today 10: 424–430.

    Google Scholar 

  • Nolling J.W. and Becker J.O. 1994. The challenge of research and extension to define and implement alternatives to methyl bromide. J. Nematol. 26: 573–586.

    Google Scholar 

  • Oaks A., Boesel I.L., Goodfellow V.J. and Windspear M.J. 1986. Separation of amino acids by high performance liquid chromatography. In: Lambers H., Neeteson J.J. and Stulen I. (eds), Fundamental, Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants. Martinus Nijhoff Publ., Dordrecht, Netherlands, pp. 197–202.

    Google Scholar 

  • Omwega C.O., Thomason J.L. and Roberts P.A. 1990. A single dominant gene in common bean conferring resistance to three root-knot nematode species. Phytopathology 80: 745–748.

    Google Scholar 

  • Porceddu A., Falorni A., Ferradini N., Cosentino A., Calcinaro F., Faleri C. et al. 1999. Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus. Mol. Breed. 5: 553–560.

    Google Scholar 

  • Potter J.W. and Olthof T.H.A. 1993. Nematode pests of vegetable crops. In: Evans K., Trudgill D.L. and Webster J.M. (eds), Plant Parasitic Nematodes in Temperate Agriculture. CAB International, Wallingford, UK, pp. 171–208.

    Google Scholar 

  • Ramputh A.L. and Bown A.W. 1996. Rapid gamma-aminobutyric acid synthesis and the inhibition of the growth and development of the oblique-banded leaf-roller larvae. Plant Physiol. 111: 1349–1352.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, USA.

    Google Scholar 

  • Sanger F., Nicklen S. and Coulson A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Sasser J.N. 1980. Root-knot nematodes: a global menace to crop production. Plant Dis. 64: 36–41.

    Google Scholar 

  • Sasser J.N. and Freckman D.W. 1987. A world perspective on nematology: the role of the society. In: Veech J.A. and Dickson D.W. (eds), Vistas on Nematology: A Commemoration of the Twenty-fifth Anniversary of the Society of Nematologists. Society of Nematologists, Inc., Hyattsville, MD, USA, pp. 7–14.

    Google Scholar 

  • Satya Narayan V. and Nair P.M. 1990. Metabolism, enzymology and possible roles of 4-aminobuyrate in higher plants. Phytochemistry 29: 367–375.

    Google Scholar 

  • Scott-Taggart C.P., Van Cauwenberghe O.R., McLean M.D. and Shelp B.J. 1999. Regulation of γ-aminobutyric acid in situ by glutamate availability. Physiol. Plant 106: 363–369.

    Google Scholar 

  • Shelp B.J., Bown A.W. and McLean M.D. 1999. Metabolism and functions of gamma-aminobutyric acid. Tr. Plant Sci. 4: 446–452.

    Google Scholar 

  • Snedden W.A. and Fromm H. 1998. Calmodulin, calmodulin-related proteins and plant responses to the environment. Tr. Plant Sci. 3: 299–304.

    Google Scholar 

  • Southern E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Google Scholar 

  • Stretton A.O.W., Campbell W.C. and Babu J.R. 1987. Biological activity and mode of action of avermectins. In: Veech J.A. and Dickson D.W. (eds), Vistas on Nematology. Soc Nematologists Inc, Hyattsville, MD, USA, pp. 136–146.

    Google Scholar 

  • Williamson V.M. 1999. Plant nematode resistance genes. Curr. Opin. Plant Biol. 2: 327–331.

    Google Scholar 

  • Yuan T. and Vogel H. 1998. Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. J. Biol. Chem. 273: 30328–30335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLean, M.D., Yevtushenko, D.P., Deschene, A. et al. Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode. Molecular Breeding 11, 277–285 (2003). https://doi.org/10.1023/A:1023483106582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023483106582

Navigation