Skip to main content
Log in

Nitrogen fixation in a large shallow lake: rates and initiation conditions

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The fixation of molecular nitrogen (N2fix) by cyanobacteria in situ and in PO4-P enrichment experiments was investigated in large shallow Lake Võrtsjärv in 1998–2000. In this lake, N2fix started when TN/TP mass ratio was about 20, which is much higher than Redfield mass ratio 7. The rate of N2fix varied between 0.81 and 2.61 μgN l−1 d−1 and maximum rate (2.61 μgN l−1 d−1) was measured in 15.08.2000. In L. Võrtsjärv a lag period of a couple of weaks occurred between the set-up of favourable conditions for N2fix as the appearance of N2-fixing species and depletion of mineral nitrogen, and the real N2fix itself. However, if the favorable conditions for N2fix occurred in the lake, N2fix started after enrichment with PO4-P in mesocosms even then when no N2fix was detected in the lake. N2fix in mesocosms was also more intensive than in lake water. In our experiments PO4-P concentrations higher than 100 μgP l−1started to inhibit N2fix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brock, T. D., M. T., Madigan, J. M. Martinko & J. Parker, 1994. Biology of Microorganisms. Prentice-Hall International Inc.: 617–621; 656–658; 734–735.

  • Bulgakov, N.G. & A. P. Levich, 1999. The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure. Arch. Hydrobiol. 146: 3–22.

    Google Scholar 

  • Cole, G. A., 1983. Textbook of Limnology. 3rd edn. The C. V. Mosby Company: 324–327.

  • Flett, R. J., D. W. Schindler, R. D. Hamilton & N. E. R. Campbell, 1980. Nitrogen fixation in Canadian Precambrian Shield lakes. Can. J. Fish. aquat. Sci. 37: 494–505.

    Google Scholar 

  • Flett, R. J., R. D. Hamilton, & N. E. R. Campbell, 1976. Aquatic acetylene-reduction techniques: solutions to several problems. Can. J. Microbiol. 22(1): 43–51.

    Google Scholar 

  • Golterman, H. L., 1975. Physiological Limnology. Elsevier Scientific Publishing Company: 99–108.

  • Granhall, U. & A. Lundgren, 1971. Nitrogen fixation in lake Erken. Limnol. Oceanogr. 16. 5: 711–719.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim: 419 pp.

    Google Scholar 

  • Haberman, J., P. Nõges, E. Pihu, T. Nõges, K. Kangur, & V. Kisand, 1998. Characterization of L. Võrtsjärv.–Limnologica 28(1): 3–11.

    Google Scholar 

  • Hambright, K. D., T. Zohary, J. Easton, B. Azoulay, & T. Fishbein, 2001. Effects of zooplankton grazing and nutrients on the bloom-forming, N2-fixing cyanobacterium Aphanizomenon in Lake Kinneret. J. Plankton Res., 23: 165–174.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology. Chapman and Hall, U.S.A.: 137–165.

    Google Scholar 

  • Helal, H. A. & D. A. Culver, 1991. N: Pratio and plankton production in fish hatchery ponds. Verh. int. Ver. Limnol. 24: 1508–1511.

    Google Scholar 

  • Horne, A. J., J. E. Dillard, D. K. Fujita & C. R. Goldman, 1972. Nitrogen fixation in Clear Lake, California. II. Synoptic studies on the autumn Anabaena bloom. Limnol. Oceanogr. 17(5): 693–703.

    Google Scholar 

  • Horne, A. J., J. C. Sandusky & C. J. W. Carmiggelt, 1979. Nitrogen fixation in Clear Lake, California. 3III. Repetitive synoptic sampling of the spring Aphanizomenon blooms. Limnol. Oceanogr. 24(2): 316–328.

    Google Scholar 

  • Howarth, R. W., J. J. Cole, R. Marino & J. Lane, 1988a. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33(4): 669–687.

    Google Scholar 

  • Howarht, R.W., J. J. Cole, & R. Marino, 1988b. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33(4): 688–701.

    Google Scholar 

  • Howarth, R. W. & J. J. Cole, 1985. Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229: 653–655.

    Google Scholar 

  • Howarth, R. W. & R. Marino, 1990. Nitrogen-fixing cyanobacteria in the plankton of lakes and estuaries: a reply to the comment by Smith. Limnol. Oceanogr. 35(8): 1859–1863.

    Google Scholar 

  • Hudson, J. J., W. D. Taylor, & D. W. Schindler, 2000. Phosphate concentrations in lakes. Nature. 406: 54–56.

    Google Scholar 

  • Huttula, T. & T. Nõges (eds.), 1998. Present State and Future Fate of Lake Võrtsjärv. Tampere: 150 pp.

  • Karl, D. M., 2000. Phosphorus, the staff of life. Nature 406: 31–32.

    Google Scholar 

  • Kostyaev, V. J., 1986. Biologiya i Èkologiya Azotfiksiruyushchih Sinezelenyh Vodoroslej Presnyh Vod [Biology and Ecology of Nitrogen Fixing Cyanobacteria from Inland Water]. Leningrad 122 pp.

  • Leppänen,. J. M., A. Niemi & I. Rinne, 1988. Nitrogen fixation of cyanobacteria (blue-green algae) and the nitrogen cycle of the Baltic sea. Symbiosis 6: 181–194.

    Google Scholar 

  • Levine, S. N. & D. W. Schindler, 1992. Modification of the N: P ratio in lakes by in situ processes. Limnol. Oceanogr. 37: 917–935.

    Google Scholar 

  • Levine, S. N. & D. W. Schindler, 1999. Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada. Can. J. Fish. aquat. Sci. 56: 451–466.

    Google Scholar 

  • MacKay, N. A. & J. J. Elser, 1998. Nutrient recycling by Daphnia reduces N2 fixation by cyanobacteria. Limnol. Oceanogr. 43(2): 347–354.

    Google Scholar 

  • Michard, M., L. Aleya, & J. Verneaux, 1996. Mass occurrence of the Cyanobacteria Microcystis aeruginosa in the hypereutrophic Villerest Reservoir (Roanne, France): usefulness of the biyearly examination of N/P (nitrogen phosphorus) and P/C (protein/ carbohydrate) couplings. Arch. Hydrobiol. 135: 337–359.

    Google Scholar 

  • Niemi, A., 1979. Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Bot. Fenn. 110: 57–61.

    Google Scholar 

  • Nixdorf, B. & R. Deneke, 1997. Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343: 269–284.

    Google Scholar 

  • Nõges, P. & T. Feldmann, 1999. Factors controlling the distribution of aquatic macrophytes in shallow Lake Võrtsjärv. In: Sustainable Lake Management. 8th Int. Conf. Conserv. Manag. Lakes 4 pp.

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408/409: 277–283.

    Google Scholar 

  • Présing, M., S. Herodek, L. Vörös & I. Kobor, 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Arch. Hydrobiol. 136: 553–562.

    Google Scholar 

  • Présing, M., K. V.-Balogh, L. Vörös & H. M. Shafik, 1997. Relative nitrogen deficiency without occurrence of nitrogen fixing bluegreen algae in a hypertrophic reservoir. Hydrobiologia 342/343: 55–61.

    Google Scholar 

  • Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Google Scholar 

  • Seip, K. L., 1994. Phosphorus and nitrogen limitation of algal biomass across trophic gradients. Aquat. Sci. 56: 16–28.

    Google Scholar 

  • Smith, Val H., 1985. Predictive models for the biomass of bluegreen algae in lakes. Wat. Resour. Bull. 21(3): 433–439.

    Google Scholar 

  • Smith, Val H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science. 221: 669–670.

    Google Scholar 

  • Smith, Val H., 1990. Effects of nutrients and non-algal turbidity on blue-green algal biomass in four North Carolina reservoirs. Lake and Reservoir Management 6: 125–131.

    Google Scholar 

  • Smith, Val H. & S. J. Bennett, 1999. Nitrogen: phosphorus supply ratios and phytoplankton community structure in lakes. Arch. Hydrobiol. 146: 37–53.

    Google Scholar 

  • Smith, Val H., V. J. Bierman, L. J. Bradley & K. Havens, 1995. Historical trends in the Lake Okeechobee ecosystem IV. Nitrogen: phosphorus ratios, cyanobacterial dominance, and nitrogen fixation potential. Arch. Hydrobiol./Suppl. Monogr. Beitr. 107: 71–88.

    Google Scholar 

  • Stewart, W. D. P., G. P. Fitzgerald & R. M. Burris, 1967. In situ studies on N2 fixation using the acetylene reduction technique. Proc. natn. Acad. Sci. U.S.A. 58: 2071–2078.

    Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Google Scholar 

  • Toetz, D. & M. McFarland, 1987. Lake loading ratios (N: P) and lacustrine nitrogen fixation. Water Resour. Bull. 23: 239–241.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt. int. Ver. Theor. Angew. Limnol. 9: 1–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tõnno, I., Nõges, T. Nitrogen fixation in a large shallow lake: rates and initiation conditions. Hydrobiologia 490, 23–30 (2003). https://doi.org/10.1023/A:1023452828667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023452828667

Navigation