Skip to main content
Log in

Pelagic cyanobacterial nitrogen fixation in lakes and ponds of different latitudinal zones

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Excess nitrogen (N) loading is one of the main factors causing eutrophication. Biological N fixation (BNF), as a main contributor to N loading, plays a critical role in the N cycle. The N2 fixation rate (N2fix) is regulated by many factors and is usually higher under conditions of N deficiency. Most studies have focused on the regulation of factors that influence the N2fix in specific aquatic ecosystems or artificial conditions, while fewer have focused on large scale such as the latitudinal distribution of N2fix. To understand the regulation of the N2fix in latitudinal zones, the key factors, and the underlying mechanism, we compared the N2fix in 27 lakes located in different latitudinal zones and analyzed the main regulators. The results showed that (1) heterocyst density (DHet) and the N2fix were highest in low-temperate lakes and were 2.5–2.7 and 11.6–22.1 times greater than in high-temperate lakes and tropical lakes, respectively, in the 99th quantile; (2) DHet increased and then decreased with increasing latitude and radiation, and peaked at 30.28° N and 2300 J/cm/d; (3) DHet was positively correlated with temperature and increased slightly with increasing temperature; (4) N2fix increased and then decreased with increasing latitude, temperature and radiation, and peaked at 38.8° N, 24.21 °C and 2120 J/cm/d. The results suggest that BNF could be regulated by larger scale factors, e.g., temperature and radiation in latitudinal scale. Compared with high-temperate lakes and tropical lakes, low-temperate lakes may face more difficulties in controlling eutrophication due to the potentially higher N loading from BNF under similar nutrient and morphometric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supported the results and conclusions of this study are available from the corresponding authors on reasonable request.

Code availability

Not applicable.

References

  • Abell JM, Özkundakci D, Hamilton DP, Jones JR (2012) Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: a global study. Fundam Appl Limnol 181:1–14

    Article  CAS  Google Scholar 

  • Bergman B, Gallon JR, Rai AN , Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19(3):139–185

    Article  CAS  Google Scholar 

  • Beversdorf LJ, Miller TR, Mcmahon KD (2013) The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PLoS ONE 8(2):e56103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compaoré J, Stal LJ (2010) The effect of temperature on the sensitivity of nitrogenase to oxygen in two heterocystous cyanobacteria. J Phycol 46(6):1172–1179

    Article  CAS  Google Scholar 

  • Dodds WK (2002) Freshwater ecology-concepts and environmental application. Academic Press, California

    Google Scholar 

  • Edmondson WT, Lehman JT (1981) The effect of changes in the nutrient income on the condition of Lake Washington. Limnol Oceanogr 26:1–29

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Galford AE et al (2000) Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems 3(3):293–307

    Article  Google Scholar 

  • Estep MLF, Vigg S (1985) Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan Lake system, Nevada. Can J Fish Aquat Sci 42(11):1712–1719

    Article  CAS  Google Scholar 

  • Eugster O, Gruber N (2012) A probabilistic estimate of global marine N-fixation and denitrification. Global Biogeochem Cycles 26:1–15

    Article  CAS  Google Scholar 

  • FAOSTAT (2017) Fertilizers Consumption 2002–2016 (online query). Food and Agricultural Organization of the United Nations

  • Ferber LR, Levine SN, Lini A, Livingston GP (2010) Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshw Biol 49(6):690–708

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Article  Google Scholar 

  • Figueroa FL, Bonomi-Barufi J, Celis-Plá PSM et al (2020) Short-term effects of increased CO2, nitrate and temperature on photosynthetic activity in Ulva rigida (Chlorophyta) estimated by different pulse amplitude modulated fluorometers and oxygen evolution. J Exp Bot 72(2):491–509

    Article  CAS  Google Scholar 

  • Findlay DL, Hecky RE, Hendzel LL, Stainton MP, Regehr GW (1994) Relationship between N2-fixation and heterocyst abundance and its relevance to the nitrogen budget of Lake 227. Can J Fish Aquat Sci 51(10):2254–2266

    Article  CAS  Google Scholar 

  • Flett R (1980) Nitrogen fixation in Canadian Precambrian Shield Lakes. Can J Fish Aquat Sci 37:494–505

    Article  CAS  Google Scholar 

  • Flett RJ, Hamilton RD, Campbell NER (1976) Aquatic acetylene-reduction techniques: solutions to several problems. Can J Microbiol 22(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Forbes MG, Doyle RD, Scott JT et al (2008) Physical factors control phytoplankton production and nitrogen fixation in eight Texas Reservoirs. Ecosystems 11(7):1181–1197

    Article  CAS  Google Scholar 

  • Gallon JR, Pederson DM, Smith GD (1993) The effect of temperature on the sensitivity of nitrogenase to oxygen in the cyanobacteria Anabaena cylindrical (Lemmermann) and Gloeothece (Nägeli). New Phytol 124(2):251–257

    Article  CAS  PubMed  Google Scholar 

  • Gondwe MJ, Guildford SJ, Hecky RE (2008) Planktonic nitrogen fixation in Lake Malawi/Nyasa. Hydrobiologia 596(1):251–267

    Article  CAS  Google Scholar 

  • Granhall U, Lundgren A (1971) Nitrogen fixation in Lake Erken. Limnol Oceanogr 16(5):711–719

    Article  CAS  Google Scholar 

  • Hadas O, Pinkas R, Malinsky-Rushansky N, Nishri A, Kaplan A, Rimmer A, Sukenik A (2012) Appearance and establishment of diazotrophic cyanobacteria in Lake Kinneret, Israel. Freshw Biol 57(6):1214–1227

    Article  CAS  Google Scholar 

  • Hall GH, Collins VG, Jones JG, Horsley RW (1978) The effect of sewage effluent on Grasmere (English Lake District) with particular reference to inorganic nitrogen transformations. Freshw Biol 8(2):165–175

    Article  CAS  Google Scholar 

  • Hayes NM, Patoine A, Haig HA et al (2018) Spatial and temporal variation in nitrogen fixation and its importance to phytoplankton in phosphorus-rich lakes. Freshw Biol 64(2):269–283

    Article  CAS  Google Scholar 

  • Horne AJ (1979) Nitrogen fixation in Clear Lake, California. 4. Diel studies on Aphanizomenon and Anabaena blooms. Limnol Oceanogr 24(2):329–341

    Article  CAS  Google Scholar 

  • Horne AJ, Galat DL (1985) Nitrogen fixation in an oligotrophic, saline desert lake: Pyramid, Lake Nevada. Limnol Oceanogr 30(6):1229–1239

    Article  CAS  Google Scholar 

  • Horne AJ, Goldman CR (1972) Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts. Limnol Oceanogr 17(5):678–692

    Article  Google Scholar 

  • Horne AJ, Viner AB (1971) Nitrogen fixation and its significance in tropical Lake George, Uganda. Nature 232(5310):417–418

    Article  CAS  PubMed  Google Scholar 

  • Horne AJ, Dillard JE, Goldman D (1972) Nitrogen fixation in Clear Lake, California. II. Synoptic studies on the autumn Anabaena bloom. Limnol Oceanogr 17(5):693–703

    Article  Google Scholar 

  • Horne AJ, Sandusky JC, Carmiggelt CJW (1979) Nitrogen fixation in Clear Lake, California. 3. Repetitive synoptic sampling of the spring Aphanixomenon blooms. Limnol Oceanogr 24(2):316–328

    Article  CAS  Google Scholar 

  • Howarth RW, Marino R, Lane J (1988a) Nitrogen fixation in freshwater, estuarine, and marine Ecosystems: rates and importance. Limnol Oceanogr 33(4, part 2):669–687

    CAS  Google Scholar 

  • Howarth RW, Marino R, Cole JJ (1988b) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Biogeochemical controls. Limnol Oceanogr 33(42):688–701

    CAS  Google Scholar 

  • Jonse KL, Roscoe JV, Jonse JG (1980) The potential for nitrogen fixation in a Lake Receiving Sewage Effluent (Grasmere, English Lake District). J Appl Microbiol 49(1):143–154

    Google Scholar 

  • Journey CA, Arrington JM, Beaulieu KM, Graham JL, Bradley PM (2011) Limnological conditions and occurrence of taste-and-odor compounds in Lake William C. Bowen and municipal Reservoir #1, Spartanburg County, South Carolina, 2006–2009. Center for Integrated Data Analytics Wisconsin Science Center

  • Kang RJ, Shi DJ, Cong W, Cai ZL, Ouyang P (2005) Factors influencing the heterocyst differentiation in Anabaena sp. PCC7120. Chin J Process Eng 5(2):209–212

    CAS  Google Scholar 

  • Kellar PE, Paerl HW (1980) Physiological adaptations in response to environmental stress during an N2-Fixing Anabaena bloom. Appl Environ Microbiol 40(3):587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly CA, Fee E, Ramlal PS, Rudd JWM, Hesslein RH, Anema C, Schindler EU (2001) Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol Oceanogr 46(5):1054–1064

    Article  CAS  Google Scholar 

  • Kisand V, Nõges T (2004) Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake. Microbiol Ecol 50:51–62

    Article  CAS  Google Scholar 

  • Klamath Hydrologic Settlement Agreement (KHSA) (2010) [WWW document]. http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath-Agreements/Klamath-Hydroelectric-Settlement-Agreement-2-18-10signed

  • Koenker R, Park BJ (1994) An interior point algorithm for nonlinear quantile regression. J Econometr 71(1–2):265–283

    Google Scholar 

  • Koeve W, Kähler P (2016) Oxygen utilization rate (OUR) underestimates ocean respiration: a model study. Global Biogeochem Cycles 30:1166–1182

    Article  CAS  Google Scholar 

  • Kondo M, Kobayashi M, Takahashi E (1989) Effect of phosphorus and temperature on the growth and nitrogenase activity in Azolla-Anabaena association. Soil Sci Plant Nutr 35(2):217–226

    Article  Google Scholar 

  • Laamanen M, Kuosa H (2005) Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizonmen flos-aquae in Baltic Sea with reference to Anabaena spp. and Nodularia spumigena. Boreal Environ Res 10:19–30

    Google Scholar 

  • Landolfi A, Kahler P, Koeve W, Oschlies A (2018a) Global marine N2 fixation estimates: from observations to models. Front Microbiol 9:2112

    Article  PubMed  PubMed Central  Google Scholar 

  • Landolfi A, Kähler P, Koeve W, Oschiles A (2018b) Mini review global marine N2 fixation estimates: from observations to models. Front Microbiol 9:1–8

    Article  Google Scholar 

  • Lännergren C, Lundgren A, Granhall U (1974) Acetylene reduction and primary production in Lake Erken. Copenhagen 25:365–369

    Google Scholar 

  • Le Cren ED, Lowe-Mcconnell RH (1980) The functioning of freshwater ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Levine SN, Lewis WM (1984) Diel variation of nitrogen fixation in Lake Valencia, Venezuela. Limnol Oceanogr 29(4):887–893

    Article  CAS  Google Scholar 

  • Levine SN, Lewis WM Jr (1987) A numerical model of nitrogen fixation and its application to Lake Valencia, Venezuela. Freshw Biol 17(2):265–274

    Article  Google Scholar 

  • Lewis WM Jr, Wurtsbaugh WA, Paerl HW (2011) Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ Sci Technol 45:10300–10305

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang HZ, Liang XM, Yu Q, Xiao XC, Shao JC, Wang HJ (2017) Total phytoplankton abundance is determined by phosphorus input: evidence from an 18-month fertilization experiment in four subtropical ponds. Can J Fish Aquat Sci 74(9):1454–1461

    Article  CAS  Google Scholar 

  • Li Y, Ma Y, Wang HJ, Wang HZ, Cui YD, Bian SJ, Zhang M, Liu MM, Yu YX, Schallenberg M (2021) Do alternative stable states exist in large shallow Lake Taihu, China?. J Oceanol Limnol https://doi.org/10.1007/s00343-022-1286-z

    Article  Google Scholar 

  • Loiselle SA, Azza N, Czar A, Bracchini L, Tognazzi A, Dattilo A, Rossi C (2007) Variability in factors causing light attenuation in Lake Victoria. Freshw Biol 53(3):535–545

    Article  CAS  Google Scholar 

  • Messer LF, Brown MV, Ruth P, Doubell M (2021) Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs. PeerJ 9(3):e10809

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaels AF, Olson D, Sarmiento JL, Ammerman JW, Fanning K, Jahnke R, Knap AH, Lipschultz F, Prospero JM (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35:181–226

    Article  CAS  Google Scholar 

  • Mugidde R, Hecky RE, Hendzel LL, Taylor WD (2003) Pelagic nitrogen fixation in Lake Victoria (East Africa). J Great Lakes Res 29(Supplement 2):76–88

    Article  CAS  Google Scholar 

  • Myrstener M, Jonsson A, Bergstrm AK (2016) The effects of temperature and resource availability on denitrification and relative N2O production in boreal lake sediments. J Environ Sci 47(009):82–90

    Article  CAS  Google Scholar 

  • Nagata T (2010) A journey with plant cell division: reflection at my halfway stop, vol 71. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 5–21

    Google Scholar 

  • Nicholls KH, Hopkins GJ (1993) Recent changes in Lake Erie (North Shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the Zebra Mussel introduction. J Great Lakes Res 19:637–647

    Article  Google Scholar 

  • Paerl HW, Otten TG (2016) Duelling ‘CyanoHABs’: Unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2- fixing harmful cyanobacteria. Environ Microbiol 18:316–324

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Xu H, McCarthy MJ, Zhu GW, Qin BQ, Li YP et al (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res 45:1973–1983

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Gardner WS, McCarthy MJ, Peierls BL, Wilhelm SW (2014) Algal blooms: noteworthy nitrogen. Science 346(6206):175

    Article  CAS  PubMed  Google Scholar 

  • Patoine A, Graham MD, Leavitt PR (2006) Spatial variation of nitrogen fixation in lakes of the northern Great Plains. Limnol Oceanogr 51(4):1665–1677

    Article  CAS  Google Scholar 

  • Pettersson K, Grust K, Weyhenmeyer G, Blenckner T (2003) Seasonality of chlorophyll and nutrients in Lake Erken-effects of weather conditions. Hydrobiologia 506–509(1–3):75–81

    Article  Google Scholar 

  • Postgate JR (1987) Nitrogen fixation, 2nd edn. Edward Arnold, London

    Google Scholar 

  • Preuss SB, Britt AB (2003) A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics 164(1):323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds C (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Romero IC, Klein NJ, Sañudo-Wilhelmy SA, Capone DG (2013) Potential trace metal co-limitation controls on N2 fixation and NO3- uptake in Lakes with varying trophic status. Front Microbiol 4:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmaso N, Morabito G, Garibaldi L, Mosello R (2007) Trophic development of the deep lakes south of the Alps: a comparative analysis. Fundam Appl Limnol Archiv Für Hydrobiologie 170:177–196

    Article  CAS  Google Scholar 

  • Schanz F (1994) Oligotrophication of Lake Zürich as reflected in Secchi depth measurements. Ann Limnol 30:57–65

    Article  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Schindler DW (2012) The dilemma of controlling cultural eutrophication of lakes. Proc R Soc B: Biol Sci 279:4322–4333

    Article  CAS  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ et al (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci USA 105:11254–11258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JT, Doyle RD, Prochnow S, White JD (2008) Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured? Ecol Appl 18:805–819

    Article  PubMed  Google Scholar 

  • Smil V (2001) Enriching the earth. MIT Press, Cambridge

    Google Scholar 

  • Stewart WD, Fitzgerald GP, Burris RH (1967) In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci USA 58(5):2071–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stich HB, Brinker A (2010) Oligotrophication outweighs effects of global warming in a large, deep, stratified lake ecosystem. Glob Change Biol 16:877–888

    Article  Google Scholar 

  • Storch TA, Saunders GW, Ostrofsky ML (1990) Diel nitrogen fixation by cyanobacterial surface blooms in Sanctuary Lake, Pennsylvania. Appl Environ Microbiol 56(2):466–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tõnno I, Nõges T (2003) Nitrogen fixation in a large shallow lake: rates and initiation conditions. Hydrobiologia 490(1):23–30

    Article  Google Scholar 

  • Torrey MS, Lee GF (1976) Nitrogen fixation in Lake Mendota, Madison, Wisconsin. Limnol Oceanogr 21(3):365–378

    Article  CAS  Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–553

    Article  CAS  Google Scholar 

  • Viner AB (1985) Conditions stimulating planktonic N2-fixation in Lake Rotongaio. NZ J Mar Freshwat Res 19(2):139–150

    Article  CAS  Google Scholar 

  • Wang H, Wang H (2009) Mitigation of lake eutrophication: Loosen nitrogen control and focus on phosphorus abatement. Prog Nat Sci 19(10):1445–1451

    Article  CAS  Google Scholar 

  • Willén E (2001) Phytoplankton and water quality characterization: experiences from the Swedish large lakes Mälaren, Hjälmaren, Vättern and Vänern. Ambio 30:529–537

    Article  PubMed  Google Scholar 

  • Wood SA, Prentice MJ, Smith K et al (2010) Low dissolved inorganic nitrogen and increased heterocyte frequency:precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir. J Plankton Res 32(9):1315–1325

    Article  CAS  Google Scholar 

  • Yao XL, Zhang L, Zhang YL, Zhang B, Zhao ZH, Zhang YB, Li M, Jiang XY (2018) Nitrogen fixation cccurring in sediments: contribution to the nitrogen budget of Lake Taihu, China. J Geophys Res Biogeosci 14:2661–2674

    Article  CAS  Google Scholar 

  • Zhong JC, Fan CX, Liu GF, Zhang L, Shang JG, Gu XZ (2010) Seasonal variation of potential denitrification rates of surface sediment from Meiliang Bay, Taihu Lake, China. J Environ Sci 22(7):961–967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by National Key Research and Development Program of China (2021YFC3200103), Wuhan Science and Technology Plan Project (2020020602012152), the Research Project of Wuhan Municipal Construction Group Co., Ltd. (wszky202014), and State Key Laboratory of Freshwater Ecology and Biotechnology (2019FBZ01). Hai-Jun Wang was supported by the Youth Innovation Association of Chinese Academy of Sciences (Y201859) as an excellent member, and was also supported by the Yunnan Provincial Department of Science and Technology (202001BB050078). We thank Prof. Erik Jeppesen and David P. Hamilton for their comments on the manuscript. We also thank Qing Yu for her help in the field investigations and Meng-Na Zhang for her help in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Jun Wang or Hong-Zhu Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 914 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, YX., Ma, SN. et al. Pelagic cyanobacterial nitrogen fixation in lakes and ponds of different latitudinal zones. Aquat Sci 84, 42 (2022). https://doi.org/10.1007/s00027-022-00871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-022-00871-6

Keywords

Navigation