Skip to main content
Log in

Direct determination of 226Ra in environmental matrices using collision cell inductively coupled plasma mass-spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Direct determination of 226Ra in complex environmental matrices (biological and uranium ore samples) by collision-cell inductively coupled plasma mass-spectrometry was investigated. Possible polyatomic interferences were studied and their effects on 226Ra measurements were determined. The instrumental conditions for optimal signal-to-noise ratio for 226Ra were found. Concentrations of 226Ra in certified reference samples were measured using both external calibration and standard addition approaches. The best precision was obtained by applying standard additions. The absolute detection limit for 226Ra was 1 fg with optimal gas flow rates for the collision cell of 7 ml.min-1 for helium and 4 ml.min-1 for hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Lawrie J. A. Desmond D. Spence S. Anderson C. Edmondson, Appl. Radiation Isotopes, 53 (2000) 133.

    Google Scholar 

  2. R. D. Lloyd G. N. Taylor S. C. Miller F. W. Bruenger W. S. S. Jee, Health Phys., 81 (2001) 691.

    Google Scholar 

  3. K. Morvan Y. Andres B. Mokili J. C. Abbe, Anal. Chem., 73 (2001) 4218.

    Google Scholar 

  4. M. Condomines R. Bouchez J. L. Ma J. C. Tanguy J. Amosse M. Piboule, Nature, 325 (1987) 607.

    Google Scholar 

  5. F. Chabaux D. Ben Othman J. L. Birck, Chem. Geol., 114 (1994) 191.

    Google Scholar 

  6. C. K. Kim R. Seki S. Morita S. I. Yamasaki A. Tsumura Y. Takaku Y. Igarashi M. Yamamoto, J. Anal. At. Spectrom., 6 (1991) 205.

    Google Scholar 

  7. J. S. Becker H. J. Dietze, Fresenius J. Anal. Chem., 364 (1999) 482.

    Google Scholar 

  8. F. Chartier M. Aubert M. Piller, Fresenius J. Anal. Chem., 364 (1999) 320.

    Google Scholar 

  9. P. P. Povinec J. J. La Rosa S. H. Lee S. Mulsow I. Osvath E. Wyse, J. Radioanal. Nucl. Chem., 248 (2001) 713.

    Google Scholar 

  10. Y. J. Kim C. K. Kim C. S. Kim J. Y. Yun B. H. Rho, J. Radioanal. Nucl. Chem., 240 (1999) 613.

    Google Scholar 

  11. S. Joannon C. Pin, J. Anal. At. Spectrom., 16 (2001) 32.

    Google Scholar 

  12. A. S. Cohen R. K. O'nions, Anal. Chem., 63 (1991) 2705.

    Google Scholar 

  13. V. N. Epov I. E. Vasil'eva V. I. Lozhkin E. N. Epova L. F. Paradina A. N. Suturin, J. Anal. Chem., 54 (1999) 837.

    Google Scholar 

  14. C. J. Park P. J. Oh H. Y. Kim D. S. Lee, J. Anal. At. Spectrom., 14 (1998) 223.

    Google Scholar 

  15. S. Nakai S. Fukuda S. Nakada, Analyst, 126 (2001) 612.

    Google Scholar 

  16. A. I. Saprykin J. S. Becker H. J. Dietze, J. Anal. At. Spectrom., 10 (1995) 897.

    Google Scholar 

  17. Z. Du R. S. Houk, J. Anal. At. Spectrom., 15 (2000) 383.

    Google Scholar 

  18. S. F. Boulyga H. J. Dietze J. S. Becker, Mikrochim. Acta, 137 (2001) 93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epov, V.N., Lariviere, D., Evans, R.D. et al. Direct determination of 226Ra in environmental matrices using collision cell inductively coupled plasma mass-spectrometry. Journal of Radioanalytical and Nuclear Chemistry 256, 53–60 (2003). https://doi.org/10.1023/A:1023343824444

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023343824444

Keywords

Navigation