Skip to main content
Log in

Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+-H+-H2PO4–HPO42–OH–Cl–H2O system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The solubility of NdPO4(c) was studied at 23±2 °C from both the over and undersaturation directions, with pH ranging from 0 to 9, P concentrations ranging from 0.0003 to 1.00M, and equilibration periods ranging from 6 to 57 days. Equilibrium was reached in <6 days. From the H+, Nd, and P concentrations in equilibrated solutions, the logarithm of the thermodynamic equilibrium constant for the reaction (NdPO4(c) ⇄ Nd3++PO4 3-) was calculated to be -24.65±0.23 and the value of the Pitzer ion-interaction parameter β(2)for Nd3+-H2PO4 - was determined to be -92.9. Predictions based on these thermodynamic quantities were in excellent agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Lemire J. Fuger S. Kastriot H. Nitsche W. J. Ullman P. Potter P. Vitorge M. H. Rand H. Wanner J. Rydberg, Chemical Thermodynamics of Neptunium and Plutonium. Chemical Thermodynamics, Vol. 4, North-Holland, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 2001.

    Google Scholar 

  2. Dhanpat Rai A. R. Felmy, Mechanistic Data and Approach for Predicting Leachate Concentrations, PNC PA0865 91-001, Japan Nuclear Cycle Development Institute, Tokai, Japan, 1991.

    Google Scholar 

  3. Dhanpat Rai A. R. Felmy R. W. Fulton, J. Sol. Chem., 24 (1995) 79.

    Google Scholar 

  4. A. R. Felmy Dhanpat Rai M. J. Mason R. W. Fulton, Radiochim. Acta, 69 (1995) 177.

    Google Scholar 

  5. R. M. Smith A. E. Martell R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes Databse, NIST Standard Reference Database 46, U.S. Department of Commerce, Gaithersburg, MD, 2001.

    Google Scholar 

  6. R. J. Silva G. Bidoglio M. H. Rand P. B. Robouch H. Wanner I. Puigdomenech, Chemical Thermodynamics of Americium, Chemical Thermodynamics, Vol. 2, North-Holland, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1995.

    Google Scholar 

  7. V. K. Rao G. R. Mahajan P. R. Natarajan, Radiochim. Acta, 40 (1986) 145.

    Google Scholar 

  8. V. K. Rao G. R. Mahajan P. R. Natarajan, Lanthanide Actinide Res., 2 (1988) 347.

    Google Scholar 

  9. M. S. Borisov A. A. Elesin I. A. Lebedev V. T. Filimonov G. N. Yakovlev, Sov. Radiochem., 8 (1966) 40.

    Google Scholar 

  10. A. I. Moskvin, Sov. Radiochem., 13 (1971) 688.

    Google Scholar 

  11. I. A. Lebedev V. Y. Frenkel' Y. M. Kulyako B. F. Myasoedov, Sov. Radiochem., 21 (1979) 692.

    Google Scholar 

  12. A. I. Moskvin, Sov. Radiochem., 11 (1969) 447.

    Google Scholar 

  13. A. R. Felmy, GMIN, A Computerized Chemical Equilibrium Model Using a Constrained Minimization of the Gibbs Free Energy, PNL-7281, Pacific Northwest National Laboratory, Richland, WA, 1990.

    Google Scholar 

  14. Dhanpat Rai, Radiochim. Acta, 35 (1984) 97.

    Google Scholar 

  15. Dhanpat Rai R. G. Strickert D. A. Moore J. L. Ryan, Radiochim. Acta, 33 (1983) 201.

    Google Scholar 

  16. Dhanpat Rai A. R. Felmy R. W. Fulton, Radiochimica Acta, 56 (1992a) 7.

    Google Scholar 

  17. Dhanpat Rai A. R. Felmy R. W. Fulton J. L. Ryan, Radiochim. Acta, 58/59 (1992b) 9.

    Google Scholar 

  18. S. M. Sterner A. R. Felmy J. R. Rustad K. S. Pitzer, Thermodynamic Analysis of Aqueous Solutions Using INSIGHT, PNWD-SA-4436, Pacific Northwest National Laboratory, Richland, WA, 1997.

    Google Scholar 

  19. K. S. Pitzer, J. Phys. Chem., 77 (1973) 268.

    Google Scholar 

  20. K. S. Pitzer, Ion Interaction Approach: Theory and Data Corrrelation, Activity Coefficients in Electrolyte SolutionsK. S. Pitzer (Ed.), CRC Press, Boca Raton, Florida, 2nd ed., 1991.

    Google Scholar 

  21. K. S. Pitzer G. Mayorga, J. Phys. Chem., 77 (1973) 2300.

    Google Scholar 

  22. C. E. Harvie N. Moller J. H. Weare, Geochim. Cosmochim. Acta, 48 (1984) 723.

    Google Scholar 

  23. K. S. Pitzer L. F. Silvester, J. Solution Chem., 5 (1976) 269.

    Google Scholar 

  24. D. D. Wagman W. H. Evans V. B. Parker R. H. Schumm I. Halow S. M. Bailey K. L. Churney R. L. Nuttal, J. Phys. Chem. Ref. Data, Vol. 11,Suppl. 2, 1982.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Felmy, A.R. & Yui, M. Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+-H+-H2PO4–HPO42–OH–Cl–H2O system. Journal of Radioanalytical and Nuclear Chemistry 256, 37–43 (2003). https://doi.org/10.1023/A:1023339723535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023339723535

Keywords

Navigation