Skip to main content
Log in

Stable Atmospheric Surface Layer in Modelling with Constant Ground Temperature

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Influence of the surface roughness, geostrophic wind speed and initial stable stratification on surface layer scales, namely the friction velocity, temperature scale and the Monin-Obukhov length, and on non-dimensional profiles has been studied in quasi-stationary PIAPBLM (Prague Institute of Atmospheric Physics Boundary Layer Model) runs. Modifications of the stability functions, of the non-local mixing length concept, and of surface layer parametrization have improved the model results. With the ground temperature kept constant in time, the boundary layer is subjected to a turbulent cooling induced by surface roughness and to a counteracting turbulent heat transfer directed downwards. If the wind speed is lower, a rather mixed layer develops capped by a more stable layer. The estimated Monin-Obukhov length then slightly increases and the non-dimensional gradients overpredict the empirical values even more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloyan A.Ye., Yordanov D.L. and Penenko V.V., 1981: Parameterization of the surface layer with a variable height. Meteorology and Hydrology, 37-46 (in Russian).

  • André J.C., De Moor G., Lacarrère P., Therry G. and du Vachat R., 1978: Modeling the 24 h evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35, 1861-1883.

    Article  Google Scholar 

  • Bougeault P., 1985: The diurnal cycle of the marine stratocumulus layer: A higher—order model study. J. Atmos. Sci., 42, 2826-2843.

    Article  Google Scholar 

  • Bougeault P. and André J.-C., 1986: On the stability of the third—order turbulence closure for the modeling of the stratocumulus—topped boundary layer. J. Atmos. Sci., 43, 1574-1581.

    Article  Google Scholar 

  • Bougeault P. and Lacarrère P., 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 1872-1890.

    Article  Google Scholar 

  • Byun D.W., 1990: On the analytical solution of flux-profile relationships for the atmospheric surface layer. J. Appl. Meteorol., 29, 652-657.

    Article  Google Scholar 

  • Delage Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Boundary-Layer Meteorol., 82, 23-48.

    Article  Google Scholar 

  • Enger L., Koračin D. and Yang X., 1993: A numerical study of boundary-layer dynamics in a mountain valley. Boundary-Layer Meteorol., 66, 357-394.

    Article  Google Scholar 

  • Garratt J.R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Grandin G., 1983: A one-dimensional PBL model with a sub-grid scale condensation scheme for stratiform clouds and fog. Report No. 72, Department of Meteorology, University of Uppsala, Sweden.

    Google Scholar 

  • Haltiner G.J. and Martin F.L., 1957: Dynamical and Physical Meteorology. McGraw-Hill, 470 pp.

  • Högström U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorol., 42, 55-78.

    Article  Google Scholar 

  • Kalthoff N. and Vogel B., 1992: Counter-current and channelling effect under stable stratification in the area of Karlsruhe. Theor. Appl. Climatol., 45, 113-126.

    Article  Google Scholar 

  • Louis J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol., 17, 187-202.

    Article  Google Scholar 

  • Pielke R.A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • Sedlák P., 1996: Influence of katabatic flow on the Greenland ice sheet melting: numerical experiments. In: I. Nemešová (Ed.), Climate Variability and Climate Change Vulnerability and Adaptation, Institute of Atmospheric Physics, Praha, 374-378.

    Google Scholar 

  • Stull R.B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Stull R.B., 1991: Static stability-an update. Bull. Amer. Meteor. Soc., 72, 1521-1529.

    Article  Google Scholar 

  • Svoboda J., 1975: Calculation methods for turbulent characteristics in the planetary boundary layer. Idöjárás, 79, 197-206.

    Google Scholar 

  • Svoboda J., 1990: Numerical modeling of the atmospheric boundary layer over a hilly landscape. Studia geoph. et geod., 34, 167-184.

    Article  Google Scholar 

  • Svoboda J. and Štekl J., 1994: Mesoscale modelling of a flow modification caused by orography. Meteorol. Zeitschrift, N.F. 3, 233-241.

    Article  Google Scholar 

  • van den Hurk B.J.J.M. and Holtslag A.A.M., 1997: On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Boundary-Layer Meteorol., 82, 119-134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedlák, P. Stable Atmospheric Surface Layer in Modelling with Constant Ground Temperature. Studia Geophysica et Geodaetica 42, 41–60 (1998). https://doi.org/10.1023/A:1023316305631

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023316305631

Navigation