Skip to main content
Log in

Evaluation of Inhibitory Activity of Casein on Proteases in Rat Intestine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the possible use of casein as an adjuvant for oral delivery of peptide drugs, the inhibitory activity of casein on proteases in rat small intestine was examined.

Methods. Male Sprague-Dawley rats weighing 200-300 g were used as the animal model. The luminal contents of the small-intestinal tract and mucosal subcellular fractions of the small intestine were prepared; the enzymatic activities of trypsin, chymotrypsin, aminopeptidase-B, leucine aminopeptidase, dipeptidylaminopeptidase-IV, cathepsin B, and dipeptidylaminopeptidase-II were determined using a specific substrate for each protease; and the effect of casein on the protease activity was examined.

Results. Casein strongly inhibited trypsin and chymotrypsin in the concentration-dependent manner. As to the proteases in the intestinal epithelial cells, casein inhibited an endopeptidase, cathepsin B, but not other exopeptidases. The inhibitory activity was independent of the type of casein. The kinetic analysis characterized the type of inhibition on trypsin and chymotrypsin to be competitive.

Conclusions. Casein was shown to have strong inhibitory activity on trypsin and chymotrypsin in the intestinal lumen. Taken into consideration that trypsin and chymotrypsin are endopeptidases, it is suggested that casein has strong inhibitory activity only on endopeptidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Kimura, Y. Murakawa, M. Ohno, S. Ohtani, and K. Higaki. Gastrointestinal absorption of recombinant human insulin-like growth factor-I in rats. J. Pharmacol. Exp. Ther. 283:611-618 (1997).

    Google Scholar 

  2. P. Andrle, P. Langguth, W. Rubas, and H. P. Merkle. In vitro assessment of intestinal IGF-I stability. J. Pharm. Sci. 91:290-300 (2002).

    Google Scholar 

  3. A. B. Maunsbach. Isolation of kidney lysosomes. Methods Enzymol. 31:330-339 (1976).

    Google Scholar 

  4. J. P. F. Bai. The regional differences in the mucosal-cell lysosomal proteases within the rat small intestine. Int. J. Pharm. 107:133-140 (1994).

    Google Scholar 

  5. J. P. F. Bai. Effects of bile salts on brush-border and cytosolic proteolytic activities of intestinal enterocytes. Int. J. Pharm. 111:147-152 (1994).

    Google Scholar 

  6. F. N. Ghadially, J. A. Trew, J. M. Lalonde, and P. K. Chattopadhyay. Enzyme content of hepatocellular lysosomes in the liver of the tumor-bearing mouse. Br. J. Exp. Pathol. 61:528-533 (1980).

    Google Scholar 

  7. D. Miller and R. K. Crane. The digestive function of the epithelium of the small intestine. I: An intracellular locus of disaccharide and sugar phosphate ester hydrolysis. Biochim. Biophys. Acta 52:281-293 (1961).

    Google Scholar 

  8. D. Miller and R. K. Crane. The digestive function of the epithelium of the small intestine. II: Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim. Biophys. Acta 52:293-298 (1961).

    Google Scholar 

  9. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagents. J. Biol. Chem. 193:265-275 (1951).

    Google Scholar 

  10. S. Kawabata, T. Miura, T. Morita, H. Kato, K. Fujikawa, S. Iwanaga, K. Takada, T. Kimura, and S. Sakakibara. Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsin. Eur. J. Biochem. 172:17-25 (1988).

    Google Scholar 

  11. H. Sawada, H. Yokosawa M. Hoshi, and S. Ishii. Ascidian sperm chymotrypsin-like enzyme; participation in fertilization. Experientia 39:377-378 (1983).

    Google Scholar 

  12. Y. Kanaoka, T. Takahashi, H. Nakayama, K. Takada, T. Kimura, and S. Sakakibara. Synthesis of a key fluorogenic amide, L-arginine-4-methylcoumaryl-7-amide (L-Arg-MCA) and its derivatives. Fluorescence assays for trypsin and papain. Chem. Pharm. Bull. 25:3126-3128 (1977).

    Google Scholar 

  13. K. Saifuku, T. Sekine, T. Namihisa, T. Takahashi, and Y. Kanaoka. A novel fluorometric ultramicro determination of serum leucine aminopeptidase using a coumarine derivative. Clin. Chim. Acta 84:85-91 (1978).

    Google Scholar 

  14. T. Kato, T. Nagatsu, T. Kimura, and S. Sakakibara. Fluorescence assay of x-prolyl dipeptidyl-aminopeptidase activity with a new fluorogenic substrate. Biochem. Med. 19:351-359 (1978).

    Google Scholar 

  15. A. J. Barrett and H. Kirschke. Proteolytic enzymes part C. Methods Enzymol. 80:535-561 (1981).

    Google Scholar 

  16. D. Mantle, M. F. Hardy, B. Lauffart, J. R. McDermott, A. I. Smith, and R. J. Pennington. Purification and characterization of the major aminopeptidase from human skeletal muscle. Biochem. J. 211:567-573 (1983).

    Google Scholar 

  17. K. Yamaoka, Y. Tanigawara, H. Tanaka, and Y. Uno. A pharmacokinetic analysis program (MULTI) for micro computer. J. Pharmacobiodyn. 4:879-885 (1981).

    Google Scholar 

  18. R.-J. Xu. Development of the newborn GI tract and its relation to colostrum/milk intake: A review. Reprod. Fertil. Dev. 8:35-48 (1996).

    Google Scholar 

  19. C. J. Xian, C. A. Shoubridge, and L. C. Read. Degradation of IGF-I in the adult rat gastrointestinal tract is limited by a specific antiserum or the dietary protein casein. J. Endocrinol. 146:215-225 (1995).

    Google Scholar 

  20. R.-J. Xu and T. Wang. Gastrointestinal absorption of insulinlike growth factor-I in neonatal pigs. J. Pediat. Gastroenterol. Nutr. 23:430-437 (1996).

    Google Scholar 

  21. T. Lindberg, K. Ohlsson, and B. Westrom. Protease inhibitors and their relation to protease activity in human milk. Pediat. Res. 16:479-483 (1982).

    Google Scholar 

  22. R. K. Rao, O. Koldovsky, and T. P. Davis. Inhibition of intestinal degradation of somatostatin by rat milk. Am. J. Physiol. 258:G426-G431 (1990).

    Google Scholar 

  23. W. N. Eigel, J. E. Butler, C. A. Emstrom, H. M. Farrel Jr., V. R. Harwalkar, R. Jenness, and R. Mal Whitney. Nomenclature of proteins of cow's milk: fifth revision. J. Dairy Sci. 67:1599-1631 (1984).

    Google Scholar 

  24. B. Ekstrand and M. Larsson-Raznikiewicz. The monomeric casein composition of different size bovine casein micelles. Biochim. Biophys. Acta 536:1-9 (1978).

    Google Scholar 

  25. T. Ono, Y. Takagi, and I. Kunishi. Casein phosphopeptides from casein micelles by successive digestion with pepsin and trypsin. Biosci. Biotechnol. Biochem. 62:16-21 (1998).

    Google Scholar 

  26. S. Gotoh, R. Nakamura, M. Nishiyama, T. Fujita, A. Yamamoto, and S. Muranishi. Does bacitracin have an absorption-enhancing effect in the intestine? Biol. Pharm. Bull. 18:794-796 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikiro Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtani, S., Shirasu, K., Ogawara, Ki. et al. Evaluation of Inhibitory Activity of Casein on Proteases in Rat Intestine. Pharm Res 20, 611–617 (2003). https://doi.org/10.1023/A:1023298816392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023298816392

Navigation