Skip to main content
Log in

Histochemical distribution of intestinal enzymes of juvenile pacu (Piaractus mesopotamicus) fed lyophilized bovine colostrum

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Enzyme activity was evaluated in the intestine of juvenile pacu, Piaractus mesopotamicus, fed diets containing 0, 10 or 20 % of lyophilized bovine colostrum (LBC) inclusion for either 30 or 60 days. The enzymes intestinal acid and alkaline phosphatase (ACP and ALP, respectively), nonspecific esterase (NSE), lipase (LIP), dipeptidyl aminopeptidase IV (DAP IV) and leucine aminopeptidase (LAP) were studied using histochemistry in four intestinal segments (S1, S2, S3 and rectum). Moderate activity of the DAP IV was detected in the three last intestinal segments, but no differences among the treatments were detected. Enzymes LAP, NSE and LIP were weakly stained in all intestinal segments and the inclusion of 10 or 20 % of LBC in the diet commanded a moderate reaction to NSE in the S3 segment at day 60. ACP activity was detected only in the brush border of the S1 segment of fish fed 0 % LBC for either 30 or 60 days. The activity of ALP was very strong in the first intestinal segment, but a weak reaction was seen in the last segments. The inclusion of 20 % of LBC changed the pattern of staining to the ALP, eliciting moderate staining in S2 at day 30 and S1 at day 60. The consumption of diets containing LBC by juvenile pacu did not have significant implications in intestinal enzymatic activity, which still was not fully stimulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Association of Official Analytical Chemists—AOAC (2000) Methods of analysis. AOAC, Washington

    Google Scholar 

  • Baintner K (1994) Demonstration of acidity intestinal vacuoles of the suckling rat and pig. J Histochem Cytochem 42:231–238

    Article  CAS  PubMed  Google Scholar 

  • Bancroft JD (1996) Enzyme histochemistry. In: Bancroft JD, Stevens A (eds) Theory and practice of histological techniques, 4th edn. Churchill Livingstone, New York, pp 391–410

    Google Scholar 

  • Barbieri RL, Hernández-Blazquez FJ (2002) Análise ultra-estrutural da absorção intestinal de macromolécula protéica com o uso de peixe como modelo experimental. ConSci Saúde 1:21–30

    Article  Google Scholar 

  • Bértin L (1958) Appareil digestif. In: Grassé PP (ed) Traite´ de Zoologie, vol 13. Masson, Paris, pp 1249–1301

    Google Scholar 

  • Bessi R, Pauletti P, D’Arce RD, Machado Neto R (2002a) Colostral antibodies absorption in calves. II. Distal small intestine study. Braz J Anim Sci 31:2325–2331

    Google Scholar 

  • Bessi R, Pauletti P, D’Arce RD, Machado Neto R (2002b) Colostral antibodies absorption in dairy calves. I: proximal small intestine study. Braz J Anim Sci 31:2314–2324

    Google Scholar 

  • Bodammer P, Maletzki C, Waitz G, Emmrich J (2011) Prophylatic application of bovine colostrum ameliorates murine colitis via induction of immunoregulatory cells. J Nutr 141:1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Bowen SH (1981) Digestion and assimilation of periphytic detrital aggregate by Tilapia mossambica. Trans Am Fish Soc 110:239–245

    Article  CAS  Google Scholar 

  • Brown HH, Moon HW (1979) Localization and activities of lysosomal enzymes in jejunal and ileal ephitelial cells of the young pig. Am J Vet Res 40:1573–1577

    CAS  PubMed  Google Scholar 

  • Deimling OV, Bocking A (1976) Esterases in histochemistry and ultrahistochemistry. J Histochem 8:215–252

    Article  CAS  Google Scholar 

  • Gawlicka A, Teh S, Hung SSO, Hinton E, de Li Noüe J (1995) Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiol Biochem 14:357–371

    Article  CAS  PubMed  Google Scholar 

  • Hirji KN, Courtney WAM (1982) Leucine aminopeptidase activity in the digestive tract of perch, Perca fluviatilis L. J Fish Biol 21:615–622

    Article  CAS  Google Scholar 

  • Holmberg EL (1887) Viaje á Misiones. Bol Acad Nac Ci 10:5–391

  • Huguet A, Sève B, Le Dividich J, Le Huërou-Luron I (2006) Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets. Reprod Nutr Dev 46:167–178

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Channa A (2010) Histochemical distribution of lipase and acid phosphatase in the intestinal tract of the snow trout, Schizothorax curvifrons Heckel. J Biol Sci 10:643–647

    Article  Google Scholar 

  • Kelly D, Coutts AGP (2000) Development of digestive and immunological function in neonates: role of early nutrition. Liv Prod Sci 66: 161–167

  • Kuz’mina VV, Gelman AG (1997) Membrane-linked digestion in fish. Rev Fish Sci 5:99–129

    Article  Google Scholar 

  • Lallès J-P (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68:323–332

    Article  PubMed  Google Scholar 

  • Lima AL, Pauletti P, Susin I, Machado-Neto R (2009) Fluctuation of serum variables in goats and comparative study of antibody absorption in new-born kids using cattle and goat colostrum. Braz J Anim Sci 38:2211–2217

    Google Scholar 

  • Lodja Z (1979) Studies on dipeptidyl(amino)peptidase IV (glycyl-proline naphthylamidase). Histochemistry 59:153–166

    Article  Google Scholar 

  • Mahmood A, Yamagishi F, Eliakim R, DeSchryver-Kecskemeti K, Gramlich TL, Alpers DH (1994) A possible role for rat intestinal surfactant-like particles in transepithelial triacylglycerol transport. J Clin Invest 93:70–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moretti DB, Kindlein L, Pauletti P, Machado-Neto R (2010) IgG absorption by Santa Ines lambs fed Holstein bovine colostrum or Santa Ines ovine colostrum. Animal 4:933–937

    Article  CAS  PubMed  Google Scholar 

  • Moretti DB, Nordi WM, Lima AL, Pauletti P, Susin I, Machado-Neto R (2012) Enzyme activity in the small intestine of goat kids during the period of passive immunity acquisition. Small Rumin Res 105:321–328

    Article  Google Scholar 

  • Opuszynski K, Shireman JV (1995) Digestive mechanisms. In: Opuszynski K, Shireman JV (eds) Herbivorous fishes: culture and use for weed management. CRC, Boca Raton, pp 21–31

    Google Scholar 

  • Pandey NN, Dar AA, Mondal DB, Nagaraja L (2011) Bovine colostrum: a veterinary nutraceutical. J Vet Med Anim Health 3:31–35

    CAS  Google Scholar 

  • Pelli A, Dumont Neto R, Silva JD da, Ramos SM, Souza DS, Barbosa NDC (1997) Ingestion of ration by “pacu” (Piaractus mesopotamicus Holmberg, 1887), “curimba” (Prochilodus scrofa Steindachner, 1881) and “piau” (Leporinus friderici Bloch, 1794) in condition of semi-intensive rearing. B Inst Pesca 24:119–123

  • Playford RJ, MacDonald CE, Johnson WS (2000) Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr  72:5–14

  • Rodrigues APO, Pauletti P, Kindlein L, Cyrino JEP, Delgado EF, Machado-Neto R (2009) Intestinal morphology and histology of the striped catfish Pseudoplatystoma fasciatum (Linnaeus, 1766) fed dry diets. Aquac Nutr 15:55–563

    Article  Google Scholar 

  • Sauter SN, Roffler B, Philipona C, Morel C, Rome V, Guilloteau P, Blum JW, Hammon HM (2004) Intestinal development in neonatal calves: Effects of glucocorticoids and dependence on colostrum feeding. Biol Neon 85: 94–104

  • Schep LJ, Tucker IG, Young G, Ledger R, Butt AG (1999) Controlled release opportunities for oral peptide delivery in aquaculture. J Control Release 59:1–14

    Article  CAS  PubMed  Google Scholar 

  • Tengjaroenkul B, Smith BJ, Caceci T, Smith SA (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182:317–327

    Article  CAS  Google Scholar 

  • Urbinati EC, Gonçalves FD (2005) Pacu (Piaractus mesopotamicus). In: Baldisseroto B, Gomes LC (eds) Espécies nativas para piscicultura no Brasil. UFSM, Santa Maria, pp 225–246

    Google Scholar 

  • Van Lith HA, Meijer GW, Van Der Wouw MJA, Den Bieman M, Van Tintelen G, Van Zutphen LFM, Beynen AC (1992) Influence of amount of dietary fat and protein on esterase-1 (ES-1) activities of plasma and small intestine in rats. Br J Nutr 67: 379–390

  • Wassmer B, Augenstein U, Ronai A, De Looze S, Von Deimling O (1988) Lymph esterases of the house mouse (Mus musculus): II. The role of esterase-2 in fat resorption. Comp Biochem Physiol B 91:179–185

  • Wilson JM, Whitney JA, Neutra MR (1991) Biogenesis of the apical endosome-lysosome complex during differentiation of absorptive epithelial cells in the rat ileum. J Cell Sci 100:133–143

    PubMed  Google Scholar 

  • Zhang H, Malo C, Buddington RK (1997) Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs. J Nutr 127:418–426

Download references

Acknowledgments

Authors are indebted to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the funding and support to the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Machado-Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretti, D.B., Nordi, W.M., Cruz, T.M.P. et al. Histochemical distribution of intestinal enzymes of juvenile pacu (Piaractus mesopotamicus) fed lyophilized bovine colostrum. Fish Physiol Biochem 40, 1487–1493 (2014). https://doi.org/10.1007/s10695-014-9942-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-9942-7

Keywords

Navigation