Skip to main content
Log in

X-ray absorption spectroscopy and its application in biological, agricultural and environmental research

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

X-ray absorption spectroscopy is aspectroscopic in situ technique whichcombines the high penetration strength inherentto X-rays with the advantages of local probetechniques, such as no need for long rangeorder and the ability to obtain information onselected sites of a given sample only.Consequently, this technique is applicable to abroad variety of scientific questions,including many applications in biological,agricultural and environmental sciences. Thefirst part of this review provides anintroduction to the method, whose applicationto a broad variety of problems is discussed indetail, especially XAS of sulfur in biologicalsystems. In the second part new ideas forfurther experiments using this versatile methodare presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankudinov AL, Ravel B, Rehr JJ & Conradson SD (1998) Realspace multiple–scattering calculation and interpretation of X–ray absorption near–edge structure. Phys. Rev. B 58: 7565–7576

    Google Scholar 

  • Baydal Y, Karabulut M, Marasinghe K, Saboungi ML, Haeffner D, Shastri S, Day DE & Ray CS (1999) The effects of uranium on the structure of iron phosphate glasses. Mater. Res. Soc. XXII: 297–303

    Google Scholar 

  • Birzele B & Prange A (2002) Wheat quality: Mycotoxins, moulds and X–ray absorption near edge structure spectroscopy of gluten proteins. In: Deutsche Gesellschaft für Qualitätsforschung (Ed) Züchtung und Qualität, XXXVII, Munich (in press)

  • Blank H, Neff B, Steil S & Hormes J (1992) A new energy dispersive monochromator for soft X–ray applications. Rev. Sci. Instr. 63: 1334–1337

    Google Scholar 

  • Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC & Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdoterin, selenocysteine, and an Fe4S4 cluster. Science 275: 1305–1308

    Google Scholar 

  • Brendebach B & Modrow H (2002) Observation of fillercrosslink interactions using X–ray absorption near edge structure (XANES) of the sulfur K–edge. Kaut. Gummi Kunstst. 55: 157–163

    Google Scholar 

  • Brown GS & Doniach S (1980) The principles of X–ray absorption spectroscopy. In: Winick H & Doniach S (Eds) Synchrotron Radiation Research (pp 353–385). Plenum Press, New York

    Google Scholar 

  • Bunker B & Stern EA (1977) The iron–sulfur environment in rubredoxin. Biophys. J. 19: 253–264

    Google Scholar 

  • Butler CS, Charnock JM, Bennett B, Sears HJ, Reilly AJ, Ferguson SJ, Garner CD, Lowe DJ, Thomson AJ, Berks BC & Richardson DJ (1999) Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochem. 38: 9000–9012

    Google Scholar 

  • Charlet L & Manceau A (1993) Structure, formation and reactivity of hydrous oxide particles: Insights from X–ray absorption spectroscopy.In: Buffle J & van Leeuwen HP (Eds) Environmental Particles, Vol. 2 (pp 117–164). Lewis Publ., Ann Arbor, MI

    Google Scholar 

  • Charnock JM, Dreusch A, Kroner H, Neese F, Nelson J, Kannt A, Michel H, Garner CD, Kroneck PM & Zumft WG (2000) Structural investigations of the CuA centre of nitrous oxide reductase from Pseudomonas stutzeri by site–directed mutagenesis and X–ray absorption spectroscopy. Eur. J. Biochem. 267: 1368–1381

    Google Scholar 

  • Chauvistré R, Hormes J & Sommer K (1994) Time resolved investigation of the sulfur vulcanization process by X–ray absorption spectroscopy at the sulfur K–edge. Kaut. Gummi Kunstst. 47: 481–484

    Google Scholar 

  • Chauvistré R, Hormes J, Hartmann E, Etzenbach N, Hosch R & Hahn J (1997), Sulfur K–shell photoabsorption spectroscopy of the sulfanes R–Sn–R, n = 2–4. Chem. Phys. 223: 293–302

    Google Scholar 

  • Chen J, Christiansen J, George SJ, van Elp J, Tittsworth RC, Hales BJ, Al–Ahmad S, Coucouvanis D, Campobasso N, Bolin JT & Cramer SP (1993a) Extended X–ray absorption fine structure and L–edge spectroscopy of nitrogenase molybdenum–iron protein. In: Stiefel EI, Coucouvanis D & Newton WE (Eds) Molybdenum Enzymes, Cofactors, and Model Systems (pp 231–242). American Chemical Society, Washington DC

    Google Scholar 

  • Chen J, Christiansen J, Campobosso N, Bolin JT, Tittsworth RC, Hales BJ, Rehr JJ & Cramer SP (1993b) Refinement of a model for the nitrogenase Mo–Fe cluster using single–crystal Mo and Fe EXAFS. Angew. Chem. Int. Ed. Engl. 32: 1592–1594

    Google Scholar 

  • Chrisholm–Brause CJ, Brown GE Jr & Parks FA (1989) EXAFS investigation of aqueous Co(II) adsorbed on oxide surfaces in situ. Physica B+C 158: 646–648

    Google Scholar 

  • Chrisholm–Brause CJ, Hayes KF, Roe AL, Brown GE Jr, Parks GA & Leckie JO (1990a) Spectroscopic investigation of Pb(II) complexes at the γ–Al2O3/water interface. Geochim. Cosmochim. Acta 54: 1897–1909

    Google Scholar 

  • Chrisholm–Brause CJ, O'Day PA, Brown GE Jr & Parks GA (1990b) Evidence for multinuclear metal–ion complexes at solid solution interfaces from X–ray absorption spectroscopy. Nature 348: 528–530

    Google Scholar 

  • Clay MD, Jenney FE Jr, Hagedoorn PL, George GN, Adams MW & Johnson MK (2002) Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active–site structures and the catalytic mechanism. J. Am. Chem. Soc. 124: 788–805

    Google Scholar 

  • Cox EH, McLendon GL, Morel FM, Lane TW, Prince RC, Pickering IJ & George GN (2000) The active site structure of Thalassiosira weissflogii carbonic anhydrase. Biochem. 39: 12128–12130

    Google Scholar 

  • Cramer SP, Moura JJ, Xavier AV & LeGall J (1984) Molybdenum EXAFS of the Desulfovibrio gigas Mo(2Fe–2S) protein–structural similarity to “desulfo” xanthine dehydrogenase. J. Inorg. Biochem. 20: 275–280

    Google Scholar 

  • Dehmer JL (1972) Evidence of effective potential barriers in the X–ray absorption spectra of molecules. J. Chem. Phys. 56: 4496–4504

    Google Scholar 

  • Dehmer JL & Dill D (1975) Shape resonances in K–shell photoionisation of diatomic molecules. Phys. Rev. Let. 35: 213–215

    Google Scholar 

  • Dellalonga S, Soldatov A, Pompa M & Bianconi A (1995) Atomic and electronic structure probed by X–ray absorption spectroscopy–Full multiple scattering analysis with the G4XANES package. Comp. Mater. Sci. 4: 199–210

    Google Scholar 

  • Den–Auwer C, Revel R, Charbonnel MC, Presson MT, Conradson SD, Simoni E, le Du JF & Madiab C (1999) Actinide coordination sphere in various U, Np and Pu nitrate coordination complexes. J. Synchrotron Rad. 6: 101–104

    Google Scholar 

  • Denecke MA, Marquardt CM, Rothe J, Dardenne K, & Jensen MP (2002) XAFS study of actinide coordination structure of Np(IV)–fulvates. J. Nuclear Sci. Technol. (in press)

  • Denecke MA, Pompe S, Reich T, Moll H, Bubner M, Heise KH, Nicolai R & Nitsche H (1997) Measurements of the structural parameters for the interaction of uranium(VI) with natural and synthetic humic acids using EXAFS. Radiochim. Acta 79: 151–159

    Google Scholar 

  • Denecke MA, Bublitz D, Kim JJ, Moll H & Farkes I (1999) EXAFS investigation of the interaction of hafnium and thorium with humic acid and Bio–Rex70. J. Synchrotron Rad. 6: 394–396

    Google Scholar 

  • Dent AJ, Ramsay JDF & Swanton W (1992) An EXAFS study of uranyl ion in solution and sorbed onto silicia and montmorillonite clay colloids. J. Colloid Interface Sci. 150: 45–60

    Google Scholar 

  • Drabløs F, Nicholson DG & Ronning M (1999) EXAFS study of zinc coordination in bacitracin A. Biochim. Biophys. Acta 1431: 433–442

    Google Scholar 

  • Elder RC, Ludwig K, Cooper JN & Eidsess MK (1985) EXAFS and WAXS structure determination for an antiarthritic drug, sodium gold (I) thiomalate. J. Am. Chem. Soc. 107: 5024–5025

    Google Scholar 

  • Fendorf SE, Sparks DL, Lamble GM & Kelley MJ (1994a) Applications of X–ray absorption fine structure spectroscopy to soils. Soil Sci. Soc. Am. J. 58: 1583–1595

    Google Scholar 

  • Fendorf SE, Lamble GM, Stapleton MG, Kelley MJ & Sparks DL (1994b) Mechanisms of chromium(III) sorption on silicia. 1. Cr(III) surface structure derived by extended X–ray absorption fine structure spectroscopy. Environ. Sci. Technol. 28: 284–289

    Google Scholar 

  • Fischer DA & Yang CY (1990) Critical comparison of soft–X–ray fluorescence detectors for XAFS studies in the 2 to 4 keV region. Nucl. Inst. Meth. Phys. Res. A 291: 123–125

    Google Scholar 

  • Flemming B, Modrow H, Hallmeier KH, Hormes J, Reinhold J & Szargan R (2001) Sulfur in different chemical surroundings–S K XANES spectra of sulfur–containing heterocycles and their quantum–chemically supported interpretation. Chem. Phys. 270: 405–413

    Google Scholar 

  • Floriano PN, Schlieben O, Doomes EE, Klein I, Janssen J, Hormes J, Poliakoff ED & McCarley RL (2000) A grazing incidence surface X–ray absorption fine structure (GIXAFS) study of alkanethiols adsorbed on Au, Ag, and Cu. Chem. Phys. Lett. 321: 175–181

    Google Scholar 

  • Frank P, Hedman B, Carlson RMK, Tyson T, Roe, AL & Hodgson KO (1987) A large reservoir of sulfate and sulfonate residues within plasma cells from Ascidia ceratodes, revealed by X–ray absorption near edge structure spectroscopy. Biochem. 26: 4975–4979

    Google Scholar 

  • Fricke H (1920) The K–characteristic absorption frequencies for the chemical elements magnesium to chromium. Phys. Rev. 16: 202–215

    Google Scholar 

  • Galoisy L, Calas G, Morin G, Pugnet S & Fillet C (1998) Structure of Pd–Te precipitates in a simulated high–level nuclear waste glass. Mater. Res. Soc. 13: 1124–1127

    Google Scholar 

  • Gavel OY, Bursakov SA, Calvete JJ, George GN, Moura JJ & Moura I (1998) ATP sulfurylase from sulfate–reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc. Biochem. 37: 16225–16232

    Google Scholar 

  • George GN (1993) X–ray absorption spectroscopy of light elements in biological systems. Curr. Opin. Struct. Biol. 3: 780–784

    Google Scholar 

  • George GN, Byrd J & Winge DR (1988) X–ray absorption studies of yeast copper metallothionein. J. Biol. Chem. 263: 8199–8203

    Google Scholar 

  • George GN, Hedman B & Hodgson KO (1998a) An edge with XAS. Nat. Struct. Biol. (synchrotron suppl.) 5: 645–647

    Google Scholar 

  • George GN, Colangelo CM, Dong J, Scott RA, Khangulov SV, Gladyshev VN & Stadtman TC (1998b) X–ray absorption spectroscopy of the molybdenum site of Escherichia coli formate dehydrogenase. J. Am. Chem. Soc. 120: 1267–1273

    Google Scholar 

  • George GN, Pickering IJ, Yu EY & Prince RC (2002) X–ray absorption spectroscopy of bacterial sulfur globules. Microbiol. UK 148: 2267–2268

    Google Scholar 

  • Gilbert B, Perfetti L, Fauchoux O, Redondo J, Baudat P–A, Andres R, Neumann M, Stehen S, Gabel D, Mercanti D, Ciotti MT, Perfetti P, Margaritondo G & de Stasio G (2000) Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH. Phys. Rev. E 62: 1110–1118

    Google Scholar 

  • Gillow JB, Francis AJ, Dodge CJ, Harris R, Beveridge TJ, Brady PV & Papenguth HW (1999) Actinide bicolloid formation in brine by halophilic bacteria. Mater. Res. Soc. XXII: 1133–1140

    Google Scholar 

  • Golovchenko JA, Levesque RA & Cowan PL (1981) X–ray monochromator system for use with synchrotron radiation sources. Rev. Sci. Instrum. 52: 509–516

    Google Scholar 

  • Goulon J, Goulon–Ginet C, Cortes R & Dubois JM (1982) On experimental attenuation factors of the amplitude of the EXAFS oscillations in absorption, reflectivity and luminescence measurements. Journal de Physique 43: 539–548

    Google Scholar 

  • Guerrero R, Mas J & Pedrós–Alió C (1984) Buoyant density changes due to intercellular content of sulfur in Chromatium warmingii and Chromatium vinosum. Arch. Microbiol. 137: 350–356

    Google Scholar 

  • Gui Z, Green AR, Kasrai M, Bancroft GM & Stillman MJ (1996) Sulfur K–edge EXAFS studies of cadmium–, zinc–, copper–, and silver–rabbit liver metallothioneins. Inorg. Chem. 35: 6520–6529

    Google Scholar 

  • Hageage Jr GJ, Eanes ED & Gherna RL (1970) X–ray diffraction studies of the sulfur globules accumulated by Chromatium species. J. Bacteriol. 101: 464–469

    Google Scholar 

  • Hagelstein M, Ferrero C, Delrio MS, Hatje U, Ressler T & Metz W (1995) XAFS with an energy dispersive Laue–monochromator. Physica B 209: 223–224

    Google Scholar 

  • Hasnain SS (1991) X–ray Absorption Fine Structure. Ellis Horwood, New York

    Google Scholar 

  • Hayes KF, Roe AL, Brown Jr. GE, Hodgson KO, Leckie JO & Parks GA (1987) In situ X–ray absorption study of surface complexes at oxide/water interfaces: Selenium oxyanions on α–FeOOH. Science 238: 51–58

    Google Scholar 

  • Heald SM & Stern EA (1977) Anisotropic X–ray absorption in layered compounds. Phys. Rev. B 15: 5549–5559

    Google Scholar 

  • Hertz G (1920) Ñber die Absorptionsfrequenzen der L–Serie. Z. Phys. 3: 19–25

    Google Scholar 

  • Hilbrandt N & Martin M (1997) DEXAFS–A new technique to investigate the kinetics of high temperature solid state reactions in situ. Solid State Ionics 95: 61–64

    Google Scholar 

  • Holt SD, Piggott B, Ingledew WJ, Feiters MC & Diakun GP (1990) EXAFS of the type–1 copper site of rusticyanin. FEBS Lett. 269: 117–121

    Google Scholar 

  • Hsiao MC, Wang HP, Wei YL, Chang JE & Jou CJ (2002) Speciation of copper in the incineration fly ash of a municipal solid waste. J. Hazard Mater. 91: 301–307

    Google Scholar 

  • Huffman GP, Mitra S, Huggins FE, Shah N, Vaidya S & Lu F (1991) Quantitative analysis of all major forms of sulfur in coal by X–ray absorption fine structure spectrospcopy. Energy Fuels 5: 574–581

    Google Scholar 

  • Ildefonse P, Kirkpatrick RJ, Montez B, Calas G, Flank AM & Lagarde P (1994) Al MAS NMR and aluminium X–ray absorption near edge structure study of imogolite and allophanes. Clays Clay Miner. 42: 276–287

    Google Scholar 

  • Ito A, Shinohara K, Nakano H, Matsumura T & Kinoshita K (1996) Measurement of soft X–ray absorption spectra and elemental analysis in local regions of mammalian cells using an electronic zooming tube. J. Microscopy 181: 54–60

    Google Scholar 

  • Jacquamet L, Aberdam D, Adrait A, Hazemann JL, Latour JM & Michaud–Soret I (1998) X–ray absorption spectroscopy of a new zinc site in the fur protein from Escherichia coli. Biochem. 37: 2564–2571

    Google Scholar 

  • Karim DP, Georgopopoulus P & Knapp GS (1980) Extended Xray absorption fine structure studies of actinide ions in aqueous solution. Nucl. Technol. 51: 162–168

    Google Scholar 

  • Kasrai M, Bancroft GM, Brunner R & Connan J (1997) Characterization of sulfur in asphaltenes by sulfur K–and L–edge spectroscopy. J. Phys. VI, 7: 809–810

    Google Scholar 

  • Kirkland JP (1990) A UHV–compatible fixed–exit two/four crystal monochromator. Nucl. Instr. Methods A 291: 185–191

    Google Scholar 

  • Koningsberger DC & Prins R (Eds) (1988) X–ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. John Wiley, New York

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin, I & Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non–accumulator Thlaspi species. Plant Physiol. 122: 1343–1353

    Google Scholar 

  • Kronig de RL (1931) Zur Theorie der Feinstruktur in den Röntgenabsorptionsspektren. Z. Phys. 70: 317–323

    Google Scholar 

  • Kunz C (Ed) (1979) Synchrotron Radiation: Techniques and Applications, Topics Curr. Phys., Vol. 10. Springer, Berlin

  • Kwiatek WM, Galka M, Hanson AL, Paluszkiewicz C & Cichocki T (2001) XANES as a tool for iron oxidation state determination in tissues. J. Alloys Compounds 328: 276–282

    Google Scholar 

  • Lagarde P (2001) Surface X–ray absorption spectroscopy: principles and some examples of applications. Ultramicroscopy 86: 255–263

    Google Scholar 

  • LeGrand M, Ramos AY, Calas G, Galoisy L, Ghaleb D & Pacaud F (2000) Zinc environment in aluminumborosilicate glasses by Zn K–edge extended X–ray absorption fine structure spectroscopy [for nuclear waste containment]. Mater. Res. Soc. 15: 2015–2019

    Google Scholar 

  • Lemonnier M, Collet O, Depautex C, Esteva JM & Raoux D (1978) High vacuum two crystal soft X–ray monochromator. Nucl. Instr. Methods A152: 109–111

    Google Scholar 

  • Lindley PF (1991) EXAFS and crystallographic studies of metalloproteins containing iron. In: Hasnain SS (Ed) X–ray Absorption Fine Structure (pp 115–121). Ellis Horwood, New York

    Google Scholar 

  • Lommen A, Pandya KI, Koningsberger DC & Canters GW (1991) EXAFS analysis of the pH dependence of the blue–copper site in amicyanin from Thiobacillus versutus. Biochim. Biophys. Acta 1976: 439–447

    Google Scholar 

  • Lynch J, Everlien G, Keblond C & Bazin D (1999) Evolution of sulfur during pyrolysis of petroleum kerogens. J. Synchrotron Radiat. 6: 661–663

    Google Scholar 

  • Martin P, Carlot G, Chevarier A, Den–Auwer C & Panczer C (1999) Mechanisms involved in thermal diffusion of rare earth elements in apatite. J. Nucl. Materials 275: 268–276

    Google Scholar 

  • Mayer SM, Lawson DM, Gormal CA, Roe, SM & Smith BE (1999) New insights into structure–frunction relationships in nitrogenase: A 1.6 Å resolution X–ray crystallographic study of Klebsiella pneumoniae MoFe–protein. J. Mol. Biol. 292: 871–891

    Google Scholar 

  • McDermott AE, Yachandra VK, Guiles RD, Britt RD, Dexheimer SL, Sauer K & Klein MP (1988) Low–potential iron–sulfur centers in photosystem I: an X–ray absorption spectroscopy study. Biochem. 27: 4013–4020

    Google Scholar 

  • McKeown DA, Muller IS, Buechele AC, Pegg IL, Kendziora CA & Scales CR (1999) Formulation, testing and structural characterization of high–zirconium high–level waste glasses. Mater. Res. Soc. XXII: 305–312

    Google Scholar 

  • Modrow H, Zimmer R, Visel F & Hormes J (2000) Monitoring thermal oxidation of sulfur crosslinks in SBR elastomers using sulfur K–edge XANES: a feasibility study. Kaut. Gummi Kunstst. 53: 328–337

    Google Scholar 

  • Modrow H, Zimmer R, Visel F & Hormes J (2001) Monitoring thermal oxidation of sulfur crosslinks in SBR elastomers by quantitative analysis of sulfur K–edge XANES spectra. Rubber Chem. Technol. 74: 281–294

    Google Scholar 

  • Molders N, Schilling PJ, Wong J, Roos JW & Smith IL (2001) X–ray fluorescence mapping and micro–XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT–added gasoline. Environ. Sci. Technol. 35: 3122–3129

    Google Scholar 

  • Moyes LN, Jones MJ, Reed WA, Livens FR, Charnock JM, Mosselmans JF, Hennig C, Vaughan DJ & Pattrick RA (2002) An X–ray absorption spectroscopy study of neptunium(V) reactions with mackinawite (FeS). Environ. Sci. Technol. 36: 179–183

    Google Scholar 

  • Mustre de Leon J, Rehr JJ, Zabinsky SI & Albers RC (1991) Ab initio curved–wave X–ray–absorption fine structure. Phys. Rev. B 44: 4146–4156

    Google Scholar 

  • Nakamatsu H (1995) Relation between X–ray absorption near edge spectra and interatomic distances. Chem. Phys. 200: 49–62

    Google Scholar 

  • Natoli CR, Misemer DK, Doniach S & Kutzler FW (1980) Firstprinciples calculation of X–ray absorption–edge structure in molecular clusters. Phys. Rev. A 22: 1104–1108

    Google Scholar 

  • O'Day PA, Parks GA & Brown GE Jr (1994a) Molecular structure and binding sites of cobalt(II) surface complexes on kaolinite from X–ray absorption spectroscopy. Clays Clay Miner. 42: 337–355

    Google Scholar 

  • O'Day PA, Brown Jr GE & Parks GA (1994b) X–ray absorption spectroscopy of cobalt(II) multinuclear surface complexes and surface precipitates on kaolinite. J. Colloid Interface Sci. 165: 269–289

    Google Scholar 

  • Paste S, Gotte V, Goulon–Ginet C, Rogalev A, Goulon J, Georget P & Marcilloux J (1997) Sulfur K–edge XAS study of sulfidic crosslinks in vulcanized rubbers. Journal de Physique IV 7: 665–666

    Google Scholar 

  • Parrat LG, Hemstead CF & Jossem EL (1957) “Thickness effect” in absorption spectra near absorption edges. Phys. Rev. 105: 3781–3787

    Google Scholar 

  • Peariso K, Zhou ZS, Smit AE, Matthews RG & Penner–Hahn JE (2001) Characterization of the zinc sites in cobalaminindependent and cobalamin–dependent methionine synthase using zinc and selenium X–ray absorption spectroscopy. Biochem. 40: 987–993

    Google Scholar 

  • Pickering IJ, Prince RC, Divers T & George GN (1998) Sulfur Kedge X–ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett. 441: 11–14

    Google Scholar 

  • Pickering IJ, Prince, RC, George GN, Rauser WE, Wickramasinghe WA, Watson AA, Dameron CT, Dance IG, Fairlie DP & Salt DE (1999) X–ray absorption spectroscopy of cadmium phytochelatin and model systems. Biochim. Biophys. Acta 1429: 351–364

    Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN & Salt DE (2000) Reduction and coordination of Arsenic in Indian Mustard. Plant Physiol. 122: 1171–1177

    Google Scholar 

  • Pickering IJ, George GN, Yu EY, Brune DC, Tuschak C, Overmann J, Beatty JT & Prince RC (2001). Analysis of sulfur biochemistry of sulfur bacteria using X–ray absorption spectroscopy. Biochem. 40: 8138–8145

    Google Scholar 

  • Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Trüper HG, Steudel R, Dahl C & Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X–ray absorption near edge spectroscopy. Biochim. Biophys. Acta 1428: 446–454

    Google Scholar 

  • Prange A, Kühlsen N, Birzele B, Arzberger I, Hormes J, Antes S & Köhler P (2001) Sulfur in wheat gluten: In situ analysis by Xray absorption near edge structure (XANES) spectroscopy. Eur. Food Res. Technol. 212: 570–575

    Google Scholar 

  • Prange A, Chauvistré R, Modrow H, Hormes J, Trüper HG & Dahl C (2002a) Quantitative speciation of sulfur in bacterial sulfur globules: X–ray absorption spectroscopy reveals at least three different species of sulfur. Microbiol. UK 148: 267–276

    Google Scholar 

  • Prange A, Dahl C, Trüper HG, Behnke M, Hahn J, Modrow H & Hormes J (2002b) Investigation of S–H bonds in biologically important compounds by sulfur K–edge X–ray absorption spectroscopy. Eur. Phys. J. D 20: 589–596

    Google Scholar 

  • Prange A, Dahl C, Trüper HG, Chauvistré R, Modrow H & Hormes J (2002c) X–ray absorption spectroscopy of bacterial sulfur globules: a detailed reply. Microbiol. UK 148: 2268–2270

    Google Scholar 

  • Rah S, Kim SN & Kim GH (2001) A compact double crystal monochromator for electrochemistry beamline at PLS. Nucl. Instr. Methods A 467: 388–391

    Google Scholar 

  • Rehr JJ & Albers RC (2000) Theoretical approaches to X–ray absorption fine structure. Rev. Mod. Phys. 72: 621–654

    Google Scholar 

  • Rehr JJ, Albers RC & Mustre de Leon J (1989) Single scattering curved wave XAFS code. Physica B 158: 417–418

    Google Scholar 

  • Rich AM, Ellis PJ, Tennant L, Wright PE, Armstrong RS & Lay PA (1999) Determination of Fe–ligand bond lengths and the Fe–N–O bond angles in soybean ferrous and ferric nitrosylleghemoglobin alpha using multiple–scattering XAFS. Biochem. 38: 16491–16499

    Google Scholar 

  • Richman MK, Reed DT, Kropf AJ, Aasa SB & Lewis MA (2001) EXAFS/XANES studies of plutonium–loaded sodalite/glass waste forms. J. Nucl. Materials 297: 303–312

    Google Scholar 

  • Rompel A, Cinco RM, Latimer MJ, McDermott AE, Guiles RD, Quintanilha A, Krauss RM, Sauer K, Yachandra VK & Klein MP (1998) Sulfur K–edge X–ray absorption spectroscopy: a spectroscopic tool to examine the redox state of S–containing metabolites in vivo. Proc. Natl. Acad. Sci. USA 95: 6122–6127

    Google Scholar 

  • Rothe J, Denecke MA, Neck V, Muller R & Kim JI (2002) XAFS investigation of the structure of aqueous thorium(IV) species, colloids, and solid thorium(IV) oxide/hydroxide. Inorg. Chem. 41: 249–258

    Google Scholar 

  • Rumpf H, Hormes J, Moller A & Meyer G (1999) Thermal decomposition of (NH4) (2) [PtCl6]–an in situ X–ray absorption spectroscopy study. J. Synchrotron Radiation 6: 468–470

    Google Scholar 

  • Sayers DE, Stern EA & Lytle FW (1971) New technique for investigating noncrystalline structures: Fourier analysis of the extended X–ray absorption fine structure. Phys. Rev. Lett. 27: 1204–1207

    Google Scholar 

  • Schulze DG & Bertsch PM (1995) Synchrotron X–ray techniques in soil, plant, and environmental research. Adv. Agron. 55: 1–66

    Google Scholar 

  • Schulze DG, Sutton SR & Bajt S (1995a) Determination of manganese oxidation state in soils using X–ray absorption near–edge structure (XANES) spectroscopy. Soil Sci. Soc. Am. J. 59: 1540–1548

    Google Scholar 

  • Schulze DG, McCay–Buis T, Sutton SR & Huber DM (1995b) Manganese oxidation states in Gaeumannomyces infested wheat rhizopheres probed by micro–XANES spectroscopy. Phytopathol. 85: 990–994

    Google Scholar 

  • Scott RA, Schwartz JR & Cramer SP (1986) Structural aspects of the copper sites in cytochrome c oxidase. An X–ray absorption spectroscopic investigation of the resting–state enzyme. Biochem. 25: 5546–5555

    Google Scholar 

  • Seka W & Hanson HP (1969) Molecular orbital interpretation of X–ray absorption edges. J. Chem. Phys. 50: 344–350

    Google Scholar 

  • Sette F & Chen CT (1989) Performance of the Dragon soft X–ray beamline. Rev. Sci. Instrum. 60: 1616–1621

    Google Scholar 

  • Shulman RG, Eisenberger P, Blumberg WE & Stombaugh NA (1975) Determination of the iron–sulfur distances in rubredoxin by X–ray absorption spectroscopy. Proc. Natl. Acad. Sci. USA 72: 4003–4007

    Google Scholar 

  • Stephens PJ, Morgan TV, Devlin F, Penner–Hahn, JE, Hodgson KO, Scott RA, Stout CD & Burgess BK (1985) [4Fe–4S]–cluster–depleted Azotobacter vinelandii ferredoxin I: a new 3Fe iron–sulfur protein. Proc. Natl. Acad. Sci. USA 82: 5661–5665

    Google Scholar 

  • Stern EA & Kim K (1981) Thickness effect on the extended–X–ray–absorption–fine–structure amplitude. Phys. Rev. B: 23: 1228–1232

    Google Scholar 

  • Stoehr J (1996) NEXAFS Spectroscopy. Springer, Berlin

    Google Scholar 

  • Stoehr J, Sette F & Johnson AL (1984) Near–edge X–rayabsorption fine–structure studies of chemisorbed hydrocarbons: bond lengths with a ruler. Phys. Rev. Lett. 53: 1684–1687

    Google Scholar 

  • Temple CA, George GN, Hilton JC, George MJ, Prince RC, Barber MJ & Rajagopalan KV (2000) Structure of the molybdenum site of Rhodobacter sphaeroides biotin sulfoxide reductase. Biochem 39: 4046–4056

    Google Scholar 

  • Teo BK (1986) EXAFS: Basic Principles and Data Analysis, Inorganic Chemistry Concepts, Vol. 9. Springer, Berlin

    Google Scholar 

  • Thieme J, Schmahl G, Rudolph D & Umbach E (Eds) (1998) X–ray Microscopy and Spectromicroscopy. Springer, Heidelberg

    Google Scholar 

  • Thornley FR, Barrett TN, Greaves GN & Antonini DG (1986) EXAFS with grazing incidence: application to leached nuclear waste glasses. J. Phys. C 19: 563–596

    Google Scholar 

  • Timothy JG & Madden RP (1983) Photon detectors for the ultraviolet and X–ray region. In: Koch EE (Ed) Handbook on Synchrotron Radiation, Vol. 1a. North Holland, Amsterdam

    Google Scholar 

  • Tokunaga TK, Pickering IJ & Brown Jr. GE (1996) Selenium transformations in ponded sediments. Soil Sci. Soc. Am. J. 60: 781–790

    Google Scholar 

  • Tsang HT, Batie CJ, Ballou DP & Penner–Hahn JE (1989) Xray absorption spectroscopy of the [2Fe–2S] Rieske cluster in Pseudomonas cepacia phthalate dioxygenase. Determination of core dimensions and iron ligation. Biochem. 28: 7233–7240

    Google Scholar 

  • Vairavamurthy A (1998) Using X–ray absorption to probe sulfur oxidation states in complex molecules. Spectrochim. Acta A 54: 2009–2017

    Google Scholar 

  • Vairavamurthy A, Zhou W, Eglinton R & Manowitz B (1994) Sulfonates: A novel class of organic sulfur compounds in marine sediments. Geochim. Cosmochim. Acta 58: 4681–4687

    Google Scholar 

  • Vairavamurthy A, Manowitz B, Maletic D & Wolfe H (1997) Interaction of thiols with sedimentary particulate phase: studies of 3–mercaptopropionate in salt marsh sediments from Shelter Island, New York. Org. Geochem. 26: 577–585

    Google Scholar 

  • Van Fleet–Stalder V, Chasteen TG, Pickering IJ, George GN & Prince RC (2000) Fate of selenate and selenite metabolized by Rhodobacter sphaeroides. Appl. Environ. Microbiol. 66: 4849–4853

    Google Scholar 

  • Waldo GS, Carlson RMK, Modowan JM, Peters KE & Penner–Hahn JE (1991) Sulfur speciation in heavy petroleums: Information from X–ray absorption near–edge structure. Geochim. Cosmochim. Acta 55: 801–814

    Google Scholar 

  • Wiza JL (1979) Microchannel plate detectors. Nucl. Instr. Methods 162: 587–601

    Google Scholar 

  • XAFS10 (1999) Tenth International Conference on X–ray Absorption Spectroscopy. J. Synchrotron Radiat. 6

  • XAFS11 (2001) Eleventh International Conference on X–ray Absorption Spectroscopy. J. Synchrotron Radiat. 8

  • Yachandra VK (1995) X–ray absorption spectroscopy and applications in structural biology. Meth. Enzymol. 246: 638–675

    Google Scholar 

  • Yasoshima M, Matsuo M, Kuno A & Takano B (2001) Studies on intake of heavy metals by Bradybaena similaris, land snails, byXAFS measurement. J. Synchrotron Radiat. 8: 969–971

    Google Scholar 

  • Zhang X, Balhorn R, Mazrimas J & Kirz J (1996) Measuring DNA to protein ratios in mammalian sperm heads by XANES imaging. J. Struct. Biol. 116: 335–344

    Google Scholar 

  • Zhang LB, Crossley MJ, Dixon NE, Ellis PJ, Fisher ML, King GF, Lilley PE, MacLachlan D, Pace RJ & Freeman HC (1998) Spectroscopic identification of a dinuclear metal centre in manganese(II)–activated aminopeptidase P from Escherichia coli: implications for human prolidase. J. Biol. Inorg. Chem. 3: 470–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Prange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prange, A., Modrow, H. X-ray absorption spectroscopy and its application in biological, agricultural and environmental research. Re/Views in Environmental Science and Bio/Technology 1, 259–276 (2002). https://doi.org/10.1023/A:1023281303220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023281303220

Navigation