Skip to main content
Log in

16HBE14o- Human Bronchial Epithelial Cell Layers Express P-Glycoprotein, Lung Resistance-Related Protein, and Caveolin-1

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the expression of P-glycoprotein (P-gp), lung resistance-related protein (LRP), and caveolin-1 (cav-1) in the human bronchial epithelial cell line 16HBE14o-.

Methods. The presence of P-gp, LRP, and cav-1 in 16HBE14o- cell layers was evaluated using immunocytochemical staining and visuali- zation with confocal laser scanning microscopy (CLSM). Functionality of P-gp was determined by bidirectional transport of rhodamine-123 with and without a P-gp inhibitor, verapamil. Caveolae were visualized using transmission electron microscopy (TEM). Flux of fluorescein-Na was also studied as a paracellular transport marker.

Results. Immunocytochemical staining showed expression of P-gp localized at the apical membrane of 16HBE14o- cell layers. The flux of rhodamine 123 across cell layers exhibited a greater P app value for the secretory (i.e., basolateral-to-apical) direction. This asymmetry disappeared in the presence of verapamil. CLSM provided evidence for the expression of LRP and cav-1. TEM further showed typically shaped caveolae at the apical and basolateral membranes.

Conclusion. Cell layers of 16HBE14o- express drug transport systems that are also present in the human bronchus in vivo, indicating that the 16HBE14o- cell line may be a suitable candidate for an in vitro model for mechanistic studies of drug transport processes involved in the smaller airways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Patton and R. M. Platz. Routes of delivery: case studies. (2) Pulmonary delivery of peptides and proteins for systemic action. Adv. Drug Deliv. Rev. 8:179-196 (1992).

    Google Scholar 

  2. K. J. Elbert, U. F. Schaefer, H. J. Schaefers, K. J. Kim, V. H. L. Lee, and C. M. Lehr. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm. Res. 16:601-608 (1999).

    Google Scholar 

  3. N. R. Mathias, F. Yamashita, and V. H. L. Lee. Respiratory epithelial cell culture models for evaluation of ion and drug transport. Adv. Drug Deliv. Res. 22:215-249 (1996).

    Google Scholar 

  4. K. J. Kim, Z. Borok, and E. D. Crandall. A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm. Res. 18:253-255 (2001).

    Google Scholar 

  5. K. A. Foster, M. L. Avery, M. Yazdanian, and K. L. Audus. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int. J. Pharm. 208:1-11 (2000).

    Google Scholar 

  6. A. L. Cozens, M. J. Yezzi, K. Kunzelmann, T. Ohrui, L. Chin, K. Eng, W. E. Finkbeiner, J. H. Widdicombe, and D. C. Gruenert. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 10:38-47 (1994).

    Google Scholar 

  7. B. Forbes. Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm. Sci. Technol. Today 3:18-27 (2000).

    Google Scholar 

  8. B. Forbes, S. Lim, G. P. Martin, and M. B. Brown. An in vitro technique for evaluating inhaled nasal delivery systems. S.T.P. Pharm. 12:75-79 (2002).

    Google Scholar 

  9. C. Ehrhardt, C. Kneuer, J. Fiegel, J. Hanes, U. F. Schaefer, K. J. Kim, and C. M. Lehr. Influence of apical fluid volume on the development of functional cellular junctions in the human bronchial epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res. 308:391-400 (2002).

    Google Scholar 

  10. V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Res. 46:89-102 (2001).

    Google Scholar 

  11. Z. P. Pavelic, J. Reising, L. Pavelic, D. J. Kelley, P. J. Stambrook, and J. L. Gluckman. Detection of P-glycoprotein with four monoclonal antibodies in normal and tumor tissue. Arch. Otolaryngol. Head Neck Surg. 119:753-757 (1993).

    Google Scholar 

  12. E. Lechapt-Zalcman, I. Hurbain, R. Lacave, F. Commo, T. Urban, M. Antoine, B. Milleron, and J. F. Bernaudin. MDR 1-Pgp 170 expression in human bronchus. Eur. Respir. J. 10:1837-1843 (1997).

    Google Scholar 

  13. G. L. Scheffer, P. L. Wijngaard, M. J. Flens, M. A. Izquierdo, M. L. Slovak, H. M. Pinedo, C. J. Meijer, H. C. Clevers, and R. J. Scheper. The drug resistance-related protein LRP is the human major vault protein. Nat. Med. 1:578-582 (1995).

    Google Scholar 

  14. N. L. Kedersha, J. E. Heuser, D. C. Chugani, and L. H. Rome. Vaults. III. Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry. J. Cell Biol. 112:225-235 (1991).

    Google Scholar 

  15. G. L. Scheffer, A. B. Schroeijers, M. A. Izquierdo, E. A. C. Wiemer, and R. J. Scheper. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr. Opin. Oncol. 12:550-556 (2000).

    Google Scholar 

  16. I. Sugawara, S. Akiyama, R. J. Scheper, and S. Itoyama. Lung resistance protein (LRP) expression in human normal tissue in comparison with that of MDR and MRP. Cancer Lett. 112:23-31 (1997).

    Google Scholar 

  17. S. Rybarova, M. Batekova, I. Hodorova, A. Mirossay, D. Kluchova, N. Bobrov, and M. Kocisova. Immunohistochemical detection of LRP protein in the normal human lung. Bratisl. Lek. Listy 102:66-72 (2001).

    Google Scholar 

  18. E. B. Inman. Visualization of vaults in living cells through fusion of rat major vault protein (MVP) and green fluorescent protein (GFP) from Aequoria victoria. Thesis, U.C.L.A., Los Angeles, California (1999).

    Google Scholar 

  19. S. Meschini, M. Marra, A. Calcabrini, E. Monti, M. Gariboldi, E. Dolfini, and G. Arancia. Role of the lung resistance-related protein (LRP) in the drug sensitivity of cultured tumor cells. Toxicol. In Vitro 16:389-398 (2002).

    Google Scholar 

  20. G. R. Newman, L. Campbell, C. von Ruhland, B. Jasani, and M. Gumbleton. Caveolin and its cellular and subcellular immunolocalisation in lung alveolar epithelium: Implications for alveolar epithelial type I cell function. Cell Tissue Res. 295:111-120 (1999).

    Google Scholar 

  21. C. Racine, M. Bélanger, H. Hirabayashi, M. Boucher, J. Chakir, and J. Couet. Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem. Biophys. Res. Commun. 255:580-586 (1999).

    Google Scholar 

  22. W. Schubert, P. G. Frank, B. Razani, D. S. Park, C. W. Chow, and M. P. Lisanti. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J. Biol. Chem. 276:48619-48622 (2001).

    Google Scholar 

  23. M. Gumbleton, A. G. Abulrob, and L. Campbell. Caveolae: An alternative membrane transport compartment. Pharm. Res. 17:1035-1048 (2000).

    Google Scholar 

  24. L. Pelkmans and A. Helenius. Endocytosis via caveolae. Traffic 3:311-320 (2002).

    Google Scholar 

  25. P. Thomsen, K. Roepstorff, M. Stahlhut, and B. van Deurs. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13:238-250 (2002).

    Google Scholar 

  26. M. Sargiacomo, P. E. Scherer, Z. L. Tang, E. Kübler, K. S. Song, M. C. Sanders, and M. P. Lisanti. Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA 92:9407-9411 (1995).

    Google Scholar 

  27. K. O. Hamilton, G. Backstrom, M. A. Yazdanian, and K. L. Audus. P-glycoprotein efflux pump expression and activity in Calu-3 cells. J. Pharm. Sci. 90:647-658 (2001).

    Google Scholar 

  28. R. J. Scheper, H. J. Broxterman, G. L. Scheffer, K. Kaaijk, W. S. Dalton, T. H. van Heijningen, C. K. van Kalken, M. L. Slovak, E. G. de Vries, and P. van der Valk. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 53:1475-1479 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Ehrhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhardt, C., Kneuer, C., Laue, M. et al. 16HBE14o- Human Bronchial Epithelial Cell Layers Express P-Glycoprotein, Lung Resistance-Related Protein, and Caveolin-1. Pharm Res 20, 545–551 (2003). https://doi.org/10.1023/A:1023230328687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023230328687

Navigation