Skip to main content
Log in

Chemical shift-dependent apparent scalar couplings: An alternative concept of chemical shift monitoring in multi-dimensional NMR experiments

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The paper presents an alternative technique for chemical shift monitoring in a multi-dimensional NMR experiment. The monitored chemical shift is coded in the line-shape of a cross-peak through an apparent residual scalar coupling active during an established evolution period or acquisition. The size of the apparent scalar coupling is manipulated with an off-resonance radio-frequency pulse in order to correlate the size of the coupling with the position of the additional chemical shift. The strength of this concept is that chemical shift information is added without an additional evolution period and accompanying polarization transfer periods. This concept was incorporated into the three-dimensional triple-resonance experiment HNCA, adding the information of 1Hα chemical shifts. The experiment is called HNCAcodedHA, since the chemical shift of 1Hα is coded in the line-shape of the cross-peak along the 13Cα dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131-138.

    Google Scholar 

  • Ernst, R.R. (1966) J. Chem. Phys., 45, 3845-3850.

    Google Scholar 

  • Ernst, R.R., Bodenhausen, G. and Wokaun A. (1985) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford.

    Google Scholar 

  • Fesik, S.W., Eaton, H.L., Olejniczak, E.T. and Gampe, R.T. (1990) J. Am. Chem. Soc., 112, 5370-5371.

    Google Scholar 

  • Freeman, R. (1988) A Handbook of Nuclear Magnetic Resonance, Longman Scientific & Technical, Essex.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593-12594.

    Google Scholar 

  • Güntert, P., Dötsch, V., Wider, G. and Wüthrich, K. (1993) J. Biomol. NMR, 2, 619-629.

    Google Scholar 

  • Hull, W.E. (1994) In Two Dimensional NMR Spectroscopy, Croasmun, W.R. and Carlson, R.M.K. (Eds.), VCH, New York, NY.

    Google Scholar 

  • Kay, L.E., Clore, G.M., Bax, A. and Gronenborn, A.M. (1990a) Science, 249, 411-414.

    Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990b). J. Magn. Reson., 89, 496-514.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663-10665.

    Google Scholar 

  • Lee, L.K. Rance, M., Chazin, W.J. and Palmer, A.G. (1997). J. Biomol. NMR, 9, 287-298.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393-399.

    Google Scholar 

  • Montelione, G.T., Zheng, D., Huang, Y.J., Gunsalus, K.C. and Szyperski, T. (2000) Nat. Struct. Biol., 7, 982-985.

    Google Scholar 

  • Morris, G.A. and Freeman, R. (1979) J. Am. Chem. Soc., 101, 760-762.

    Google Scholar 

  • Oschkinat, H., Griesinger, C., Kraulis, P.J., Sorensen, O.W., Ernst, R.R., Gronenborn, A.M. and Clore, G.M. (1989) Nature, 332, 374-376.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366-12371.

    Google Scholar 

  • Riek, R., Pervushin, K. and Wüthrich, K. (2000) Trends Biochem. Sci., 25, 462-468.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 13585-13590.

    Google Scholar 

  • Sattler, M., Schleucher, J. and Griesinger, C. (1999) Prog. Nucl. Magn. Reson. Spectr., 34, 93-158.

    Google Scholar 

  • Szyperski, T., Guntert, P., Otting, G. and Wüthrich, K. (1992). J. Magn. Reson., 99, 552-560.

    Google Scholar 

  • Szyperski, T., Wider, G., Bushweller, J. and Wüthrich, K. (1993) J. Am. Chem. Soc., 115, 9307-9308.

    Google Scholar 

  • Tian, F., Valafar, H. and Prestegard, J.H. (2001) J. Am. Chem. Soc., 123, 11791-11796.

    Google Scholar 

  • Tanabe, M, Hamasaki, T. and Thomas, T. (1971) J. Am. Chem. Soc., 93, 273-274.

    Google Scholar 

  • Tugarinov, V., Muhandiram, R., Ayed, R. and Kay, L.E. (2002) J. Am. Chem. Soc., on-line.

  • Wider, G. (1998) Prog. NMR Spectr., 32, 193-275.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1999) J. Am. Chem. Soc., 121, 2571-2575.

    Google Scholar 

  • Zuiderweg, E.R. (2002) Biochemistry, 41, 1-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Riek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwiatkowski, W., Riek, R. Chemical shift-dependent apparent scalar couplings: An alternative concept of chemical shift monitoring in multi-dimensional NMR experiments. J Biomol NMR 25, 281–290 (2003). https://doi.org/10.1023/A:1023083911125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023083911125

Navigation