Skip to main content
Log in

Novel Mechanisms Mediating Stunned Myocardium

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Myocardial stunning is defined as the prolonged contractile dysfunction following an ischemic episode that does not result in necrosis, which also occurs in patients with coronary artery disease. There is also evidence to consider myocardial stunning as a fundamental component of hibernating myocardium. Various experimental approaches (from a brief episode to prolonged partial ischemia) and animal models (from rodents to large mammals) have been developed to investigate the pathogenesis of myocardial stunning. Three hypotheses to explain the mechanism, i.e. oxygen radical, Troponin I degradation, and Ca2+, have been proposed. The first was tested primarily using large mammalian models, whereas the others were tested primarily using rodent models. Recently, the Ca2+ handling hyothesis has been tested in a large mammalian swine model of myocardial stunning, in which both Ca2+ and transients and L-type Ca2+ current density were decreased. Relaxation function and phospholamban phosphorylation are also radically different in large mammalian and rodent models. In addition, troponin I degradation, which was identified as the mechanism of stunning in rodent models, was not found in stunned swine myocardium. Interestingly, the large mammalian model demonstrates that stunning elicits broad changes in gene and protein regulation, some of which have not been observed in the heart previously. The overall genomic adaptation upregulates the expression of survival genes that prevent irreversible damage. Pursuing these new concepts derived from large mammalian models of ischemia/reperfusion will provide more comprehensive mechanistic information underlying myocardial stunning and will serve to devise new therapeutic modalities for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978–985.

    Google Scholar 

  2. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.

    Google Scholar 

  3. Wijns W, Serruys PW, Slager CJ, Grimm J, Krayenbuehl HP, Hugenholtz PG, Hess OM. Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. J Am Coll Cardiol 1986;7:455–463.

    Google Scholar 

  4. Fragasso G, Benti R, Sciammarella M, Rossetti E, Savi A, Gerundini P, Chierchia SL. Symptom-limited exercise testing causes sustained diastolic dysfunction in patients with coronary disease and low effort tolerance. J Am Coll Cardiol 1991;17:1251–1255.

    Google Scholar 

  5. Kloner RA, Allen J, Cox TA, Zheng Y, Ruiz CE. Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease Am J Cardiol 1991;68:329–334.

    Google Scholar 

  6. Kloner RA, Przyklenk K, Kay GL. Clinical evidence for stunned myocardium after coronary artery bypass surgery. J Card Surg 1994;9:397–402.

    Google Scholar 

  7. Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: An NHLBI workshop. Circulation 1998;97:1848–1867.

    Google Scholar 

  8. Sheehan FH, Doerr R, Schmidt WG, Bolson EL, Uebis R, von Essen R, Effert S, Dodge HT. Early recovery of left ventricular function after thrombolytic therapy for acute myocardial infarction: An important determinant of survival. J Am Coll Cardiol 1988;12:289–300.

    Google Scholar 

  9. Shen YT, Vatner SF. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 1995;76:479–488.

    Google Scholar 

  10. Camici PG, Wijns W, Borgers M, De Silva R, Ferrari R, Knuuti J, Lammertsma AA, Liedtke AJ, Paternostro G, Vatner SF. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 1997;96:3205–3214.

    Google Scholar 

  11. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med 1998;339:173–181.

    Google Scholar 

  12. Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RJ. Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: Identification of degradation products and effects on the pCaforce relation. Circ Res 1998;82:261–271.

    Google Scholar 

  13. Marban E, Gao WD. Stunned myocardium: A disease of the myofilaments? Basic Res Cardiol 1995;90:269–272.

    Google Scholar 

  14. Gao WD, Backx PH, Azan-Backx M, Marban E. Myofilament Ca2+ sensitivity in intact versus skinned rat ventricular muscle. Circ Res 1994;74:408–415.

    Google Scholar 

  15. Gao WD, Atar D, Backx PH, Marban E. Relationship between intracellular calcium and contractile force in stunned myocardium. Direct evidence for decreased myofilament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. Circ Res 1995;76:1036–1048.

    Google Scholar 

  16. Gao WD, Perez NG, Seidman CE, Seidman JG, Marban E. Altered cardiac excitation-contraction coupling in mutant mice with familial hypertrophic cardiomyopathy. J Clin Invest 1999;103:661–666.

    Google Scholar 

  17. Bolli R. Mechanism of myocardial "stunning". Circulation 1990;82:723–738.

    Google Scholar 

  18. Bolli R, Zughaib M, Li XY, Tang XL, Sun JZ, Triana JF, McCay PB. Recurrent ischemia in the canine heart causes recurrent bursts of free radical production that have a cumulative effect on contractile function. A pathophysiological basis for chronic myocardial "stunning". J Clin Invest 1995;96:1066–1084.

    Google Scholar 

  19. Shinmura K, Tang XL, Takano H, Hill M, Bolli R. Nitric oxide donors attenuate myocardial stunning in conscious rabbits. Am J Physiol 1999;277:H2495–H2503.

    Google Scholar 

  20. Kim SJ, Ghaleh B, Kudej RK, Huang CH, Hintze TH, Vatner SF. Delayed enhanced nitric oxide-mediated coronary vasodilation following brief ischemia and prolonged reperfusion in conscious dogs. Circ Res 1997;81:53–59.

    Google Scholar 

  21. Kim SJ, Kudej RK, Yatani A, Kim YK, Takagi G, Honda R, Colantonio DA, Van Eyk JE, Vatner DE, Rasmusson RL, Vatner SF. A novel mechanism for myocardial stunning involving impaired Ca(2+) handling. Circ Res 2001;89:831–837.

    Google Scholar 

  22. Kudej R, Kim S, Shen Y, Jackson J, Kudej A, Yang G, Bishop S, SF V. Nitric oxide, an important regulator of perfusion-contraction matching in conscious pigs. Am J Physiol Heart Circ Physiol 2000;279:H451–H456.

    Google Scholar 

  23. Sekili S, Jeroudi MO, Tang XL, Zughaib M, Sun JZ, Bolli R. Effect of adenosine on myocardial 'stunning' in the dog. Circ Res 1995;76:82–94.

    Google Scholar 

  24. Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest 1996;97:562–576.

    Google Scholar 

  25. Sato S, Sato N, Kudej RK, Uechi M, Asai K, Shen YT, Ishikawa Y, Vatner SF, Vatner DE. Beta-adrenergic receptor signalling in stunned myocardium of conscious pigs. J Mol Cell Cardiol 1997;29:1387–1400.

    Google Scholar 

  26. Triana JF, Li XY, Jamaluddin U, Thornby JI, Bolli R. Postischemic myocardial "stunning". Identification of major differences between the open-chest and the conscious dog and evaluation of the oxygen radical hypothesis in the conscious dog. Circ Res 1991;69:731–747.

    Google Scholar 

  27. Huang CH, Kim SJ, Ghaleh B, Kudej RK, Shen YT, Bishop SP, Vatner SF. An adenosine agonist and preconditioning shift the distribution of myocardial blood flow in conscious pigs. Am J Physiol 1999;276:H368–H375.

    Google Scholar 

  28. Schroder E, Kieso RA, Laughlin D, Schroder M, Meng R, Kerber RE. Altered response of reperfused myocardium to repeated coronary occlusion in dogs. J Am Coll Cardiol 1987;10:898–905.

    Google Scholar 

  29. Nicklas JM, Becker LC, Bulkley BH. Effects of repeated brief coronary occlusion on regional left ventricular function and dimension in dogs. Am J Cardiol 1985;56:473–478.

    Google Scholar 

  30. Kloner RA, Ellis SG, Lange R, Braunwald E. Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 1983;68:I8–15.

    Google Scholar 

  31. Thomas SA, Fallavollita JA, Lee TC, Feng J, Canty JM Jr. Absence of troponin I degradation or altered sarcoplasmic Novel Mechanisms Mediating Stunned Myocardium 151 reticulum uptake protein expression after reversible ischemia in swine. Circ Res 1999;85:446–456.

    Google Scholar 

  32. Hasebe N, Shen YT, Vatner SF. Inhibition of endotheliumderived relaxing factor enhances myocardial stunning in conscious dogs. Circulation 1993;88:2862–2871.

    Google Scholar 

  33. Bers DM. Excitation-Contraction Coupling and Cardiac Contractile Force, Dordrecht, Netherlands: Kluwer Academic Press, 1991.

    Google Scholar 

  34. Masaki H, Sato Y, Luo W, Kranias EG, Yatani A. Phospholamban deficiency alters inactivation kinetics of Ltype Ca2+ channels in mouse ventricular myocytes. Am J Physiol 1997;272:H606–H612.

    Google Scholar 

  35. Pieske B, Maier LS, Bers DM, Hasenfuss G. Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res 1999;85:38–46.

    Google Scholar 

  36. Schwartz K, Lecarpentier Y, Martin JL, Lompre AM, Mercadier JJ, Swynghedauw B. Myosin isoenzymic distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol 1981;13:1071–1075.

    Google Scholar 

  37. Vegh A, Szekeres L, Parratt JR. Protective effects of preconditioning of the ischaemic myocardium involve cyclooxygenase products. Cardiovasc Res 1990;24:1020–1023.

    Google Scholar 

  38. Vegh A, Komori S, Szekeres L, Parratt JR. Antiarrhythmic effects of preconditioning in anaesthetised dogs and rats. Cardiovasc Res 1992;26:487–495.

    Google Scholar 

  39. Shiki K, Hearse DJ. Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. Am J Physiol 1987;253:H1470–H1476.

    Google Scholar 

  40. Reimer KA, Hill ML, Jennings RB. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 1981;13:229–239.

    Google Scholar 

  41. Swain JL, Sabina RL, McHale PA, Greenfield JC Jr, Holmes EW. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 1982;242:H818–H826.

    Google Scholar 

  42. DeBoer LW, Ingwall JS, Kloner RA, Braunwald E. Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 1980;77:5471–5475.

    Google Scholar 

  43. Glower DD, Spratt JA, Newton JR, Wolfe JA, Rankin JS, Swain JL. Dissociation between early recovery of regional function and purine nucleotide content in postischaemic myocardium in the conscious dog. Cardiovasc Res 1987;21:328–336.

    Google Scholar 

  44. Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 1984;55:816–824.

    Google Scholar 

  45. Taegtmeyer H, Roberts AF, Raine AE. Energy metabolism in reperfused heart muscle: metabolic correlates to return of function. J Am Coll Cardiol 1985;6:864–870.

    Google Scholar 

  46. Ito BR, Tate H, Kobayashi M, Schaper W. Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 1987;61:834–846.

    Google Scholar 

  47. Bolli R, Zhu WX, Myers ML, Hartley CJ, Roberts R. Betaadrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deterioration. Am J Cardiol 1985;56:964–968.

    Google Scholar 

  48. Ambrosio G, Jacobus WE, Bergman CA, Weisman HF, Becker LC. Preserved high energy phosphate metabolic reserve in globally "stunned" hearts despite reduction of basal ATP content and contractility. J Mol Cell Cardiol 1987;19:953–964.

    Google Scholar 

  49. Heusch G, Schafer S, Kroger K. Recruitment of inotropic reserve in "stunned" myocardium by the cardiotonic agent AR-L 57. Basic Res Cardiol 1988;83:602–610.

    Google Scholar 

  50. Carrozza JP Jr, Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan JP. Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 1992;71:1334–1340.

    Google Scholar 

  51. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E. Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 1987;79:950–961.

    Google Scholar 

  52. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM. Quantification of [Ca2+]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res 1990;66:1255–1267.

    Google Scholar 

  53. Grinwald PM. Calcium uptake during post-ischemic reperfusion in the isolated rat heart: influence of extracellular sodium. J Mol Cell Cardiol 1982;14:359–365.

    Google Scholar 

  54. Pike MM, Kitakaze M, Marban E. 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 1990;259:H1767–H1773.

    Google Scholar 

  55. Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 1988;82:920–927.

    Google Scholar 

  56. McDonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 1999; 84: 9–20.

    Google Scholar 

  57. Gao WD, Liu Y, Mellgren R, Marban E. Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+-dependent proteolysis? Circ Res 1996;78:455–465.

    Google Scholar 

  58. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 1997;80:393–399.

    Google Scholar 

  59. Murphy AM, Kogler H, Georgakopoulos D, McDonough JL, Kass DA, Van Eyk JE, Marban E. Transgenic mouse model of stunned myocardium. Science 2000;287:488–491.

    Google Scholar 

  60. Feng J, Schaus BJ, Fallavollita JA, Lee TC, Canty JM Jr. Preload Induces Troponin I Degradation Independently of Myocardial Ischemia. Circulation 2001;103:2035–2037.

    Google Scholar 

  61. Luss H, Boknik P, Heusch G, Muller FU, Neumann J, Schmitz W, Schulz R. Expression of calcium regulatory proteins in short-term hibernation and stunning in the in situ porcine heart. Cardiovasc Res 1998;37:606–617.

    Google Scholar 

  62. Luss H, Meissner A, Rolf N, Van Aken H, Boknik P, Kirchhefer U, Knapp J, Laer S, Linck B, Luss I, Muller FU, Neumann J, Schmitz W. Biochemical mechanism(s) of stunning in conscious dogs. Am J Physiol 2000;279:H176–H184.

    Google Scholar 

  63. Sherman AJ, Klocke FJ, Decker RS, Decker ML, Kozlowski KA, Harris KR, Hedjbeli S, Yaroshenko Y, Nakamura S, Parker MA, Checchia PA, Evans DB. Myofibrillar disruption in hypocontractile myocardium showing perfusion-contraction matches and mismatches. Am J Physiol 2000;278:H1320–H1334.

    Google Scholar 

  64. McDonough JL, Labugger R, Pickett W, Tse MY, MacKenzie S, Pang SC, Atar D, Ropchan G, Van Eyk JE. Cardiac troponin I is modified in the myocardium of bypass patients. Circulation 2001;103:58–64.

    Google Scholar 

  65. Stewart JR, Blackwell WH, Crute SL, Loughlin V, Greenfield LJ, Hess ML. Inhibition of surgically induced ischemia/reperfusion injury by oxygen free radical scavengers. J Thorac Cardiovasc Surg 1983;86:262–272.

    Google Scholar 

  66. Ambrosio G, Weisfeldt ML, Jacobus WE, Flaherty JT. Evidence for a reversible oxygen radical-mediated component of reperfusion injury: Reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation 1987;75:282–291.

    Google Scholar 

  67. Ambrosio G, Zweier JL, Jacobus WE, Weisfeldt ML, Flaherty JT. Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: The role of iron in the pathogenesis of reperfusion injury. Circulation 1987;76:906–915.

    Google Scholar 

  68. Gross GJ, Farber NE, Hardman HF, Warltier DC. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986;250:H372–H377.

    Google Scholar 

  69. Johnson DL, Horneffer PJ, Dinatale JM Jr, Gott VL, Gardner TJ. Free radical scavengers improve functional recovery of stunned myocardium in a model of surgical coronary revascularization. Surgery 1987;102:334–340.

    Google Scholar 

  70. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 1985;72:915–921.

    Google Scholar 

  71. Przyklenk K, Kloner RA. Superoxide dismutase plus catalase improve contractile function in the canine model of the "stunned myocardium". Circ Res 1986;58:148–156.

    Google Scholar 

  72. Sun JZ, Kaur H, Halliwell B, Li XY, Bolli R. Use of aromatic hydroxylation of phenylalanine to measure production of hydroxyl radicals after myocardial ischemia in vivo. Direct evidence for a pathogenetic role of the hydroxyl radical in myocardial stunning. Circ Res 1993;73:534–549.

    Google Scholar 

  73. Sekili S, McCay PB, Li XY, Zughaib M, Sun JZ, Tang L, Thornby JI, Bolli R. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial "stunning" in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res 1993;73:705–723.

    Google Scholar 

  74. Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R, McCay PB. Direct evidence that oxygenderived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 1989;86:4695–4699.

    Google Scholar 

  75. Bolli R. Role of oxyen radicals in myocardial stunning. In: Kloner RA, Przyklenk K, eds. Stunned Myocardium: Properties, Mechanisms, and Clinical Manifestations, New York, NY: Marcel Dekker, 1993.

    Google Scholar 

  76. Przyklenk K, Whittaker P, Kloner RA. In vivo infusion of oxygen free radical substrates causes myocardial systolic, but not diastolic dysfunction. Am Heart J 1990;119:807–815.

    Google Scholar 

  77. Goldhaber JI, Ji S, Lamp ST, Weiss JN. Effects of exogenous free radicals on electromechanical function and metabolism in isolated rabbit and guinea pig ventricle. Implications for ischemia and reperfusion injury. J Clin Invest 1989;83:1800–1809.

    Google Scholar 

  78. Miki S, Ashraf M, Salka S, Sperelakis N. Myocardial dysfunction and ultrastructural alterations mediated by oxygen metabolites. J Mol Cell Cardiol 1988;20:1009–1024.

    Google Scholar 

  79. Blaustein AS, Schine L, Brooks WW, Fanburg BL, Bing OH. Influence of exogenously generated oxidant species on myocardial function. Am J Physiol 1986;250:H595–H599.

    Google Scholar 

  80. Rowe GT, Manson NH, Caplan M, Hess ML. Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway. Circ Res 1983;53:584–591.

    Google Scholar 

  81. Krause SM, Jacobus WE, Becker LC. Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic "stunned" myocardium. Circ Res 1989;65: 526–530.

    Google Scholar 

  82. Reeves JP, Bailey CA, Hale CC. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 1986;261:4948–4955.

    Google Scholar 

  83. Kaneko M, Beamish RE, Dhalla NS. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Am J Physiol 1989;256:H368–H374.

    Google Scholar 

  84. Kaneko M, Elimban V, Dhalla NS. Mechanism for depression of heart sarcolemmal Ca2+ pump by oxygen free radicals. Am J Physiol 1989;257:H804–H811.

    Google Scholar 

  85. Corretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marban E. Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J Clin Invest 1991;88:1014–1025.

    Google Scholar 

  86. Przyklenk K, Patel B, Kloner RA. Diastolic abnormalities of postischemic "stunned" myocardium. Am J Cardiol 1987;60:1211–1213.

    Google Scholar 

  87. Charlat ML, O'Neill PG, Hartley CJ, Roberts R, Bolli R. Prolonged abnormalities of left ventricular diastolic wall thinning in the "stunned" myocardium in conscious dogs: Time course and relation to systolic function. J Am Coll Cardiol 1989;13:185–194.

    Google Scholar 

  88. Williamson BD, Lim MJ, Buda AJ. Transient left ventricular filling abnormalities (diastolic stunning) after acute myocardial infarction. Am J Cardiol 1990;66:897–903.

    Google Scholar 

  89. Colantonio D, Kudej RK, Kim S-J, Vatner SF, Van Eyk JE. Newly identified modification of the Troponin complex occur in stunning. Circulation 2000;102:II–203(abstract).

    Google Scholar 

  90. Labugger R, Organ L, Collier C, Atar D, Van Eyk JE. Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation 2000;102:1221–1226.

    Google Scholar 

  91. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985;72:V123–V135.

    Google Scholar 

  92. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211–221.

    Google Scholar 

  93. Schulz R, Rose J, Martin C, Brodde OE, Heusch G. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 1993;88:684–695.

    Google Scholar 

  94. Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 1991;69:1458–1469.

    Google Scholar 

  95. Pantely GA, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow J, Bristow JD. Regeneration of myocardial Novel Mechanisms Mediating Stunned Myocardium 153 phosphocreatine in pigs despite continued moderate ischemia. Circ Res 1990;67:1481–1493.

    Google Scholar 

  96. Schulz R, Guth BD, Pieper K, Martin C, Heusch G. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery.Amodel of short-term hibernation. Circ Res 1992;70:1282–1295.

    Google Scholar 

  97. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 1983;68:170–182.

    Google Scholar 

  98. Kudej RK, Ghaleh B, Sato N, Shen YT, Bishop SP, Vatner SF. Ineffective perfusion-contraction matching in conscious, chronically instrumented pigs with an extended period of coronary stenosis. Circ Res 1998;82:1199–1205.

    Google Scholar 

  99. Chen C, Chen L, Fallon JT, Ma L, Li L, Bow L, Knibbs D, McKay R, Gillam LD, Waters DD. Functional and structural alterations with 24-hour myocardial hibernation and recovery after reperfusion. A pig model of myocardial hibernation. Circulation 1996;94:507–516.

    Google Scholar 

  100. Fallavollita JA, Perry BJ, Canty JM Jr. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation 1997;95:1900–1909.

    Google Scholar 

  101. Fallavollita JA, Canty JM Jr. Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: Evidence for chronic stunning in pigs. Circulation 1999;99:2798–2805.

    Google Scholar 

  102. Shen YT, Kudej RK, Bishop SP, Vatner SF. Inotropic reserve and histological appearance of hibernating myocardium in conscious pigs with ameroid-induced coronary stenosis. Basic Res Cardiol 1996;91:479–485.

    Google Scholar 

  103. Knoll R, Arras M, Zimmermann R, Schaper J, Schaper W. Changes in gene expression following short coronary occlusions studied in porcine hearts with run-on assays. Cardiovasc Res 1994;28:1062–1069.

    Google Scholar 

  104. Frass O, Sharma H, Knoll R, Duncker D, McFalls E, Verdouw P, Schaper W. Enhanced gene expression of calcium regulatory proteins in stunned porcine myocardium. Cardiovasc Res 1993;27:2037–2043.

    Google Scholar 

  105. Brand T, Sharma H, Fleischmann K, Duncker D, McFalls E, Verdouw P, Schaper W. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res 1992;71:1351–1360.

    Google Scholar 

  106. Stanton L, Garrard L, Damm D, Garrick B, Lam A, Kapoun A, Zheng Q, Protter A, Schreiner G, White R. Altered patterns of gene expression in response to myocardial infarction. Circ Res 2000;86:939–945.

    Google Scholar 

  107. Sehl P, Tai J, Hillan K, Brown L, Goddard A, Yang R, Jin H, Lowe D. Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation 2000;101:1990–1999.

    Google Scholar 

  108. Jin H, Yang R, Awad T, Wang F, Li W, Williams S, Ogasawara A, Shimada B, Williams P, de Feo G, Paoni N. Effects of early angiotensin-converting enzyme inhibition on cardiac gene expression after acute myocardial infarction. Circulation 2001;103:736–742.

    Google Scholar 

  109. Przyklenk K, Kloner R. Reperfusion-injury by oxygenderived free radicals. Circ Res 1989;64:86–96.

    Google Scholar 

  110. Currie R, Tangay R, Kingma J. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 1992;87:963–971.

    Google Scholar 

  111. Sugden P, Clerk A. Cellular mechanisms of cardiac hypertrophy. J Mol Med 1998;76:725–746.

    Google Scholar 

  112. Yin T, Sandhu G, Wolfgang C, Burrier A, Webb R, Rigel D, Hai T, Wheelan J. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 1997;272:19943–19950.

    Google Scholar 

  113. Depre C. Gene profiling in the heart by subtractive hybridization. In: Dunn ME, ed. Proteomic and Genomic Analysis of Cardiovascular Disease. Wiley, 2002.

  114. Depre C, Tomlinson J, Kudej RK, Gaussin V, Thompson E, Kim SJ, Vatner D, Topper J, Vatner S. Gene program for cardiac cell survival induced by transient ischemia in conscious pig. Proc Natl Acad Sci USA 2001;98:9336–9341.

    Google Scholar 

  115. Silverman G, Bird P, Carrell R, Church F, Coughlin P, Gettins P, Irving J, Lomas D, Luke C, Moyer R, Pemberton P, Remold-O'Donnell E, Salvesen G, Travis J, Whisstock J. The serpins are an expanding superfamily of structurally similar but functionnally diverse proteins. J Biol Chem 2001;276:33293–33296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Vatner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Depre, C. & Vatner, S.F. Novel Mechanisms Mediating Stunned Myocardium. Heart Fail Rev 8, 143–153 (2003). https://doi.org/10.1023/A:1023040718319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023040718319

Navigation